NORMALIZERS OF NEST ALGEBRAS

KEITH J. COATES

(Communicated by Palle E. T. Jorgensen)

Abstract. For a nest \mathcal{N} with associated nest algebra $A_{\mathcal{N}}$, we define $S_{\mathcal{N}}$, the normalizer of $A_{\mathcal{N}}$. We develop a characterization of elements of $S_{\mathcal{N}}$ based on certain order homomorphisms of \mathcal{N} into itself. This characterization enables us to prove several structure theorems.

A normalizer of a subalgebra A of $B(H)$ can be defined as the set of operators T such that $T^*AT \subseteq A$ and $TA T^* \subseteq A$. Normalizers of diagonal algebras (which are typically defined so as to comprise only partial isometries) have played an important role in the study of certain limit algebras [P]. In this paper, we examine normalizers of nest algebras.

Theorem 2, the main theorem of this paper, establishes a characterization of an element of the normalizer of a nest algebra in terms of certain order homomorphisms of the nest into itself. We show that the normalizer is strongly closed, and that the order homomorphisms defined in Theorem 2 are related to the order homomorphisms defined in [EP]. We also develop a simplified characterization in the special case where \mathcal{N} is continuous. The latter part of the paper examines the theory of finite rank operators. Theorem 12 establishes that every finite rank element of the normalizer is a sum of rank one elements in the normalizer.

We first recall some basic concepts of the theory of nests and nest algebras, which can be found in greater detail in [D].

For \mathcal{H} a Hilbert space, a nest \mathcal{N} is defined to be a complete totally ordered lattice of (self-adjoint) projections. Where there is no possibility of confusion, we identify a projection with its range so that for $N \in \mathcal{N}$, the statement “$x \in H$ such that $N x = x$” is shortened to “$x \in N$”. We actually make use of the identification in its strongest form: [D, Theorem 2.13] states that a nest of subspaces with the order topology is homeomorphic to the corresponding nest of projections with the strong operator topology.

For $M, N \in \mathcal{N}$, $M \leq N$, the interval (M, N) refers to the set $\{L \in \mathcal{N}: M < L < N\}$. $N - M$ is called an interval projection. We define $N_- \in N$ to be $\vee\{M \in \mathcal{N}: M \leq N\}$, and N_+ to be $\wedge\{M \in \mathcal{N}: M > N\}$. Since \mathcal{N} is a complete lattice, both N_- and N_+ lie in \mathcal{N}. If $N_- \neq N$, we say that N_- is the immediate predecessor of N. If $N_+ \neq N$, we say that N_+ is the immediate successor of N. If $N - N_-$ is nonzero, then it is a minimal projection, or atom, in the core of \mathcal{N}, the von Neumann algebra generated by \mathcal{N}. A nest \mathcal{N} is said to be continuous if it contains no atoms; it is said to be purely atomic if its atoms span \mathcal{H}.
The nest algebra \(A_N \) is defined to be the algebra \(\{ A \in B(H) : (I - N)AN = 0 \text{ for all } N \in \mathcal{N} \} \), where \(I \) is the identity operator. This is equivalent to the algebra of all operators that leave invariant each subspace \(N \) of \(\mathcal{N} \).

We are now ready to formally define the normalizer of a nest algebra.

Definition 1. Given a nest \(\mathcal{N} \), the normalizer of \(A_N \) is the set \(S_N \) of operators \(T \) in \(B(H) \) with the property that \(T^*A_NT \subseteq A_N \) and \(TA_NT^* \subseteq A_N \).

Note that \(S_N \) is a semigroup (but not an algebra).

Theorem 2. Let \(T \in B(H) \). Then \(T \in S_N \) if and only if there are order homomorphisms \(\Phi, \Phi' : \mathcal{N} \to \mathcal{N} \) such that for every \(N \in \mathcal{N} \), \(TN = \Phi(N)T \) and \(T^*N = \Phi'(N)T^* \).

Proof. Suppose \(T \in B(H) \) and there are order homomorphisms \(\Phi, \Phi' : \mathcal{N} \to \mathcal{N} \) such that for every \(N \in \mathcal{N} \), \(TN = \Phi(N)T \) and \(T^*N = \Phi'(N)T^* \). Let \(A \in A_N \). Then for every \(N \in \mathcal{N} \), \((T^*ATN)H = (T^*A\Phi(N)T)H \subseteq (T^*\Phi(N))H = (NT^*)H \subseteq N \). Thus, \(T^*A_NT \subseteq A_N \). Similarly, \(TA_NT^* \subseteq A_N \), so \(T \in S_N \).

Assume \(T \in S_N \). Define \(\Phi_T : \mathcal{N} \to \mathcal{N} \) in the following way: \(\Phi_T(N) = \wedge \{ L \in \mathcal{N} : TN \subseteq L \} \), \(N \in \mathcal{N} \). Then \(\Phi_T \) is an order homomorphism of \(\mathcal{N} \) into itself such that \(TN = \Phi_T(N)TN \) for all \(N \in \mathcal{N} \). To show that \(TN = \Phi_T(N)T \), we will show that \(\Phi_T(N)T(I - N) = 0 \).

Suppose there is \(N \in \mathcal{N} \) such that \(\Phi_T(N)T(I - N) \neq 0 \). Assume first that \(\Phi_T(N) \) has no immediate predecessor. Then there is \(L \in \mathcal{N}, L < \Phi_T(N) \) such that \(LT(I - N) \neq 0 \). By the definition of \(\Phi_T(N) \), \((\Phi_T(N) - L)TN \neq 0 \). Let \(x \in N \) be such that \((\Phi_T(N) - L)TNx \neq 0 \). Since \(LT(I - N) \neq 0 \), we have that \((I - N)T^*L \neq 0 \). Let \(w \in L \) be such that \((I - N)T^*Lw = z \neq 0 \). Since \(w \in L, y \in (I - L^*) \), \([R, \text{Lemma 3.3}] \) implies that \(y^* \otimes w \in A_N \), where \((y^* \otimes w)(v) = \langle v, y \rangle w \) for \(v \in H \). Since \(L, \Phi_T(N) \) are both in \(\mathcal{N} \), \(A = L(y^* \otimes w)(\Phi_T(N) - L) \in A_N \). Thus \(T^*AT \in A_N \) by hypothesis. But \((I - N)T^*ATNx = ||y||^2z \neq 0 \), a contradiction.

Assume now that \(\Phi_T(N)T(I - N) \neq 0 \), and that \(\Phi_T(N) \) exists. Then there is \(x \in N \) such that \((\Phi_T(N) - \Phi_T(N) \)TNx = y ≠ 0, \(||y|| = 1 \). Now, either \((\Phi_T(N) - \Phi_T(N)T(I - N) \neq 0 \) or \((\Phi_T(N) - \Phi_T(N)T(I - N) \neq 0 \). If

\[
(\Phi_T(N) - \Phi_T(N)T(I - N) \neq 0,
\]

the argument of the previous paragraph (with \(L \) replaced by \(\Phi_T(N) \)) will give a contradiction. If

\[
(\Phi_T(N) - \Phi_T(N)T(I - N) \neq 0,
\]

then \((I - N)T^*(\Phi_T(N) - \Phi_T(N) \) \neq 0 \). Letting \(z \in (\Phi_T(N) - \Phi_T(N) \) be such that \((I - N)T^*z \neq 0 \), we have by \([R, \text{Lemma 3.3}] \) that \(y^* \otimes z \in A_N \), but \((I - N)T^*(y^* \otimes z)TN \neq 0 \), again giving a contradiction. We conclude that for every \(N \in \mathcal{N} \), \(\Phi_T(N)T(I - N) = 0 \), so that \(TN = \Phi_T(N)TN \).

A similar argument with \(T \) replaced by \(T^* \) establishes the existence of an order homomorphism \(\Phi' : \mathcal{N} \to \mathcal{N} \) such that for every \(N \in \mathcal{N} \), \(T^*N = \Phi'(N)T^* \).

The maps \(\Phi_T, \Phi' \) defined above are left continuous in the order topology on \(\mathcal{N} \), that is, if \(\{ N_\lambda \} \) is a net of projections in \(\mathcal{N} \), \(N_\lambda < N \in \mathcal{N} \), and \(N_\lambda \) converges to \(N \) in the order topology, then \(\Phi_T(N_\lambda) \) converges to \(\Phi_T(N) \), and \(\Phi'(N_\lambda) \) converges to \(\Phi'(N) \). This fact can be shown directly, but it is also a consequence of Lemma 3 below.
In [EP], Erdos and Power define a left order continuous order homomorphism
\[\Theta_\mathcal{U} : \mathcal{N} \to \mathcal{N} \]
associated with a norm closed \(\mathcal{A}_\mathcal{N} \) bimodule \(\mathcal{U} \) in the following way:
\[\Theta_\mathcal{U}(N) = \bigvee \{ \text{ran}(XN) : X \in \mathcal{U} \}, \quad N \in \mathcal{N}. \]

For \(T \in B(H) \), let \((T) \) denote the strongly closed \(\mathcal{A}_\mathcal{N} \) bimodule generated by \(T \).

Lemma 3. For \(T \in B(H) \), \(\Phi_T = \Theta_{(T)} \).

Proof. Let \(N \in \mathcal{N} \). Since \(\text{ran}(TN) \subseteq \Theta_{(T)}(N) \), we have \(\Phi_T(N) \leq \Theta_{(T)}(N) \).

For the other direction, note that if \(M \in \mathcal{N} \) is such that \(\text{ran}(TN) \subseteq M \), then \(\text{ran}(ATA') \subseteq M \) for all \(A, A' \in \mathcal{A}_\mathcal{N} \). Therefore \(\text{ran}(\sum_{i=1}^n A_iTA'_i) \subseteq M \) for \(A_i, A'_i \in \mathcal{A}_\mathcal{N}, 1 \leq i \leq n \in \mathbb{N} \). But elements of the form \(\sum_{i=1}^n A_iTA'_i \) strongly generate \((T)\), so that \(X \in (T) \) implies that \(\text{ran}(XN) \subseteq M \). This implies that \(\Theta_{(T)}(N) \leq M \) for \(M \in \mathcal{N} \) such that \(\text{ran}(TN) \subseteq M \). But \(\text{ran}(TN) \subseteq \Phi_T(N) \), so that \(\Theta_{(T)}(N) \leq \Phi_T(N) \). \(\blacksquare \)

In [EP, Theorem 1.5], it is shown that if \(\mathcal{U} \) is a strongly closed \(\mathcal{A}_\mathcal{N} \) bimodule, then \(\mathcal{U} = \{ X \in B(H) : XN = \Theta_\mathcal{U}(N)XN \text{ for all } N \in \mathcal{N} \} \). Corollary 4 is an immediate consequence of Lemma 3 and this fact.

Corollary 4. For \(T \in \mathcal{S}_\mathcal{N} \), \((T) = \{ X \in B(H) : XN = \Phi_T(N)X \text{ for every } N \in \mathcal{N} \} \).

Since the adjoint operation is not strongly continuous, it is not immediate that \(\mathcal{S}_\mathcal{N} \) is strongly closed. This fact can be established using Theorem 2.

Proposition 5. \(\mathcal{S}_\mathcal{N} \) is strongly closed.

Proof. Let \(\{ T_\lambda \}_{\lambda \in \Lambda} \) be a net in \(\mathcal{S}_\mathcal{N} \) and let \(T \in B(H) \) with \(T_\lambda \) converging strongly to \(T \in B(H) \). Suppose there is \(N \in \mathcal{N} \) with \(\Phi_T(N)T(I - N) \neq 0 \). Then there is \(x \in (I - N) \) and \(\Phi_T(N)Tx = y \neq 0 \). Since \(T_\lambda x \to Tx \), there is \(\lambda_0 \in \Lambda \) such that \(\lambda \geq \lambda_0 \) implies that \(\Phi_T(N)T_\lambda x = y_\lambda \neq 0 \). But, \(\Phi_T(N)T_\lambda x = 0 \) for all \(\lambda \in \Lambda \), so \(\Phi_T(N)x < \Phi_T(N) \) for all \(\lambda \geq \lambda_0 \).

If \(P \in \mathcal{N}, P < \Phi_T(N) \), there exists a \(z \in N \) such that \(Tz \in \Phi_T(N), Tz \notin P \). Since \(T_\lambda z \to Tz \), there is \(\lambda_1 > \lambda_0 \) such that \(\lambda \geq \lambda_1 \) implies \(T_\lambda z \notin P \), so that \(\Phi_T(N) > P \). We thus conclude that \(\Phi_T(N) \to \Phi_T(T) \) in the order topology, which is equivalent to convergence in the strong operator topology [D, Theorem 2.13]. Since \(\Phi_T(N) \) is a projection for every \(\lambda \), the family \(\{ \Phi_T(N) \}_{\lambda \in \Lambda} \) is uniformly bounded in norm by 1. [KR, Remark 2.5.10] then implies that
\[\Phi_T(N)T_\lambda(I - N) \to \Phi_T(T)(I - N) \]
in the strong operator topology. But \(\Phi_T(N)T_\lambda(I - N) = 0 \) for \(\lambda \in \Lambda \), forcing \(\Phi_T(T)(I - N) = 0 \) to be 0, contradicting the hypothesis.

Thus, \(\Phi_T(T)(I - N) = 0 \) so that \(TN = \Phi_T(T)T \) for every \(N \in \mathcal{N} \). A similar argument shows that \(T^*N = \Phi_T(T)T^* \) for every \(N \in \mathcal{N} \), so \(T \in \mathcal{S}_\mathcal{N} \) and \(\mathcal{S}_\mathcal{N} \) is strongly closed. \(\blacksquare \)

In general, the condition \(TN = \Phi_T(T)T \) for all \(N \in \mathcal{N} \) is not sufficient to guarantee that \(T \in \mathcal{S}_\mathcal{N} \). The proof of Theorem 2 shows that \(TN = \Phi_T(T)T \) for all \(N \in \mathcal{N} \) is equivalent only to \(T^*A_NT \subseteq \mathcal{A}_\mathcal{N} \). We close this section by showing that in the special case when \(N \) is a continuous nest, then \(TN = \Phi_T(T)T \) for all \(N \in \mathcal{N} \) is sufficient to guarantee that \(T \in \mathcal{S}_\mathcal{N} \).
Proposition 6. If \(\mathcal{N} \) is a continuous nest, then \(T \in \mathcal{S}_\mathcal{N} \) if and only if \(TN = \Phi_T(N)T \) for every \(N \in \mathcal{N} \).

Proof. Suppose \(TN = \Phi_T(N)T \) for all \(N \in \mathcal{N} \). Define the order homomorphism \(\Psi_T : \mathcal{N} \to \mathcal{N} \) by the following equation:

\[
\Psi_T(N) = \vee \{ M : \Phi_T(M) \leq N \}, \quad N \in \mathcal{N}.
\]

We will show that \(T^*N = \Psi_T(N)T^* \), by which Theorem 2 will imply that \(T \in \mathcal{S}_\mathcal{N} \).

Let \(N \in \mathcal{N} \) and note that \(T\Psi_T(N) = \Phi_T(\Psi_T(N))T \), so that \(T^*\Phi_T(\Psi_T(N)) = \Psi_T(N)T^* \). Since \(\Psi_T(N) = \vee \{ M : \Phi_T(M) \leq N \} \) and \(\Phi_T \) is left continuous, we see that \(\Phi_T(\Psi_T(N)) \leq N \). Expand \(T^*N \) as follows:

\[
T^*N = T^*\Phi_T(\Psi_T(N)) + T^*(N - \Phi_T(\Psi_T(N)))
\]

\[(*)\]

So to show that \(T^*N = \Psi_T(N)T^* \), we show that \(T^*(N - \Phi_T(\Psi_T(N))) = 0 \). We first claim that \(\text{ran}(T^*N) = \text{ran}(\Psi_T(N)T^*) \). Since \(T\Psi_T(N) = \Phi_T(\Psi_T(N))T \), we have

\[
\text{ran}(T^*N) \supseteq \text{ran}(T^*\Phi_T\Psi_T(N)) = \text{ran}(\Psi_T(N)T^*).
\]

To get containment in the other direction, note that if \(M > \Psi_T(N) \), then \(\Phi_T(M) \geq N \), so that

\[
\text{ran}(T^*N) \subseteq \text{ran}(T^*\Phi_T(M)) = \text{ran}(MT^*).
\]

Since this is true for every \(M > \Psi_T(N) \), continuity of \(\mathcal{N} \) implies that \(\text{ran}(T^*N) \subseteq \text{ran}(\Psi_T(N)T^*) \). With the inclusion established both ways, we conclude that \(\text{ran}(T^*N) = \text{ran}(\Psi_T(N)T^*) \).

Let \(x \in N - \Phi_T(\Psi_T(N)) \), \(T^*x = z \). Since \(z \in \text{ran}(T^*N), z \in \text{ran}(\Psi_T(N)T^*) \), that is, \(z \in \Psi_T(N) \). So \(\langle Tx, z \rangle = \|z\|^2, z \in \Psi_T(N), \) and \(x \in N - \Phi_T(\Psi_T(N)) \). But

\[
\Phi_T(\Psi_T(N)) = \measuredangle \{ M : \text{ran}(T\Psi_T(N)) \subseteq M \},
\]

so \(\|z\|^2 \neq 0 \) implies that \(x \in \Phi_T(\Psi_T(N)) \). Thus, \(z = 0 \) for arbitrary \(x \in N - \Phi_T(\Psi_T(N)) \), so that \(T^*(N - \Phi_T(\Psi_T(N))) = 0 \) in \((*)\) above, and \(T^*N = \Psi_T(N)T^* \).

Note that in light of the proof of Theorem 2, Proposition 6 can be restated as follows: For \(\mathcal{N} \) continuous, \(T^*A_NT \subseteq A_N \) if and only if \(TA_NT^* \subseteq A_N^* \)

Recall that the diagonal of \(\mathcal{N} \) is the algebra \(A_N \cap A_N^* \), which is also the commutant \(\mathcal{N}' \) of \(\mathcal{N} \). Since \(\mathcal{N} \) is abelian, \(\mathcal{N} \subseteq \mathcal{N}' \) so that \(\mathcal{N}'' \subseteq \mathcal{N}' \), i.e., the core of \(\mathcal{N} \) is contained in the diagonal of \(\mathcal{N} \). If \(A \) is an operator in the diagonal, then \(A, A^* \in A_N \) so that \(ABA^*, A^*BA \in A_N \) for all \(B \in A_N \) and we have that the diagonal of \(\mathcal{N} \) is contained in \(\mathcal{S}_\mathcal{N} \).

If \(\mathcal{N} \) is continuous, then \(\mathcal{S}_\mathcal{N} \) contains no compact operators, for if \(T \in \mathcal{S}_\mathcal{N} \), then \(T^*T \) is in the diagonal of \(\mathcal{N} \), and the diagonal of \(\mathcal{N} \) contains no compacts. If \(\mathcal{N} \) is purely atomic, then the finite rank elements of \(\mathcal{S}_\mathcal{N} \) strongly generate \(\mathcal{S}_\mathcal{N} \): There is a net \(\{ J_\lambda \} \) of finite rank projections in the diagonal of \(\mathcal{N} \) converging strongly to \(I \) and so \(\{ J_\lambda T \} \) lies in \(\mathcal{S}_\mathcal{N} \) and converges strongly to \(T \) for any \(T \in \mathcal{S}_\mathcal{N} \). The remainder of this paper culminates in Proposition 11 and Theorem 12, which give decomposition
results for finite rank elements of S_N. In all that follows, T is assumed to be a nonzero element of S_N.

Lemma 7. Let $N_1 \leq N_2 \leq M_1 \leq M_2$ be elements of N, and let $P = N_2 - N_1$, $Q = M_2 - M_1$. Then for $T \in S_N$, $\text{ran}(TP) \perp \text{ran}(TQ)$.

Proof. $QT^*TP = 0$, so

$$\text{ran}(TP) \perp (\text{ker}(QT^*))^\perp$$

and $(\text{ker}(QT^*))^\perp$ contains ran(TQ).

Lemma 8. Let $T \in S_N$ have rank $n < \infty$. Then there exist N_λ, N_μ, N_ν in N such that

(i) N_λ is maximal among all $N \in N$ such that $TN = 0$.

(ii) N_μ is minimal among all $N \in N$ such that $TN = T$.

(iii) N_ν is minimal among all $N \in N$ such that $TN \neq 0$.

Proof. (i) and (ii) follow easily from the fact that N is a complete lattice. For (iii), suppose there does not exist N_ν minimal among all N such that $TN \neq 0$. For every neighborhood (J,K) of N_λ, there is $L \in N$ with $N_\lambda < L < K$ (by assumption, N_λ has no immediate successor). We associate to each neighborhood such a projection L and partially order the neighborhoods by reverse inclusion. This gives a net of projections $\{L_t\}$ in N converging strongly to N_λ such that $L_t > N_\lambda$ for every t.

We pick t_0 and $x \in L_{t_0}$ such that $TL_{t_0}x = y \neq 0$. We then pick $t_1 > t_0$ such that $TL_{t_1}x \neq y$. Letting $P_1 = L_{t_0} - L_{t_1}$, we have that $TP_1 \neq 0$. Continuing inductively, we obtain $n + 1$ pairwise orthogonal interval projections $P_1, P_2, \ldots, P_{n+1}$ such that $TP_i \neq 0$, $i = 1, 2, \ldots, n + 1$. But $T(\sum_{i=1}^{n+1} P_i) \in S_N$, so Lemma 7 implies that $\text{ran}(TP_i) \perp \text{ran}(TP_j)$ for $i \neq j$. But this implies that $T(\sum_{i=1}^{n+1} P_i)$ has rank at least $n + 1$, a contradiction. The result follows.

In Lemma 7, if P, Q are distinct they are orthogonal, and $PB(H)Q \subseteq A_N$. If $P = Q$ is a minimal interval projection, then $PB(H)P \subseteq A_N$. Further, if P, Q are any two minimal interval projections, it is not difficult to see that $PB(H)Q \subseteq S_N$: Let $S \in PB(H)Q$. Since Q is minimal, $Q = N - N_-$ for some $N \in N$. If $L \subseteq N_-$, $S^*A_NSL = 0 \subseteq L$. If $L > N_-$, then $S^*A_NSL = S^*A_NSQ \subseteq Q \subseteq L$. Similarly, $S_A^*A_NS^*L \subseteq L$ for all $L \in N$.

Lemma 9. Let $T \in S_N$ have rank $m < \infty$, and suppose that there are minimal interval projections P, Q such that $T = PTQ$. Then there exist rank one operators T_1, T_2, \ldots, T_m in S_N such that $T = \sum_{i=1}^{m} T_i$.

Proof. Since $T \in PB(H)Q$ is of rank m, there are m rank one operators T_1, T_2, \ldots, T_m in $PB(H)Q$ such that $T = \sum_{i=1}^{m} T_i$. By the observation immediately preceding this lemma, each of these rank one operators is in S_N.

Lemma 10. Let $T \in S_N$ and suppose that Q is a minimal interval projection and that $TQ \neq 0$. Then there exists a minimal interval projection P such that $TQ = PTQ$.

Proof. For $QT^* = (TQ)^* \in S_N$, define $N_\lambda, N_\mu,$ and N_ν as in Lemma 8. Then $N_\mu - N_\nu, N_\nu - N_\lambda$ are orthogonal projections such that $QT^* = QT^*(N_\mu - N_\mu) + QT^*(N_\nu - N_\lambda)$. Now, $TQB(H)QT^* \subseteq A_N$, so that

$$0 = (N_\mu - N_\nu)TQB(H)QT^*(N_\mu - N_\lambda).$$
This implies that at most one of \((N_\mu - N_\nu)TQ\), \(QT^*(N_\nu - N_\lambda)\) is nonzero. By construction, \(QT^*(N_\nu - N_\lambda) \neq 0\), so \(QT^* = QT^*(N_\nu - N_\lambda)\), or \(TQ = (N_\nu - N_\lambda)TQ\). The result follows with \(P = N_\nu - N_\lambda\).

Proposition 11. Let \(T \in Spec\) have rank \(n < \infty\). Then there exist projections \(N_1 < N_2 < \cdots < N_k\), \(M_1 < M_2 < \cdots < M_k\), \(k \leq n\), in \(Spec\) such that \(T = \sum_{i=1}^{k} P_iTQ_i\), where \(P_i = (M_i - (M_i)_-)\) and \(Q_i = (N_i - (N_i)_-)\).

Proof. For the given \(T\), let \(N_1 = N_\nu\) as in Lemma 8. Then \((N_1)_- = (N_\nu)_- = N_\lambda\) and \(T = T(N_1 - (N_1)_-) + T(I - N_1)\), with both \(T(N_1 - (N_1)_-)\) and \(T(I - N_1)\) in \(Spec\). By Lemma 10, there is an \(M_1 \in Spec\) such that

\[
T(N_1 - (N_1)_-) = (M_1 - (M_1)_-)T(N_1 - (N_1)_-) \neq 0.
\]

By Lemma 7, \((M_1 - (M_1)_-) \perp ran(T(I - N_1))\).

If \(T(I - N_1) \neq 0\), we repeat the above construction to obtain an \(M_2\) and an \(N_2\) such that \(T = (M_1 - (M_1)_-)T(N_1 - (N_1)_-) + (M_2 - (M_2)_-)T(N_2 - (N_2)_-) + T(I - N_2)\), where at least the first two terms in this sum are nonzero, \(N_1 < N_2\), and \((M_2 - (M_2)_-)\), \((M_1 - (M_1)_-)\), \(ran(T(I - N_2))\) are pairwise orthogonal. Further, \(M_1 < M_2\): Let \(\Phi_T\) be defined as in Theorem 2. By construction, \(M_1 \leq \Phi_T(N_1)\). Now,

\[
0 = TN_1(N_2 - (N_2)_-) = \Phi_T(N_1)T(N_2 - (N_2)_-) = \Phi_T(N_1)(M_2 - (M_2)_-)T.
\]

Since \((M_2 - (M_2)_-)T\) is nonzero, we have that

\[
\Phi_T(N_1)(M_2 - (M_2)_-)T \neq (M_2 - (M_2)_-)T,
\]

so that \(\Phi_T(N_1) < M_2\).

Repeating the above process \(k\) times, we have \(N_1 < N_2 < \cdots < N_k\), \(M_1 < M_2 < \cdots < M_k\) such that

\[
T = \sum_{i=1}^{k} ((M_i - (M_i)_-)T((N_i - (N_i)_-) + T(I - N_k),
\]

where the support (range) of any term in the sum is orthogonal to the support (range) of any other term. Since \(T\) has rank \(n\), there exists a \(k \leq n\) such that \(T(I - N_k) = 0\).

Theorem 12. Let \(T \neq 0\) in \(Spec\) have rank \(n < \infty\). Then there exist \(n \leq \infty\) rank one operators \(T_1, T_2, \ldots, T_n\) in \(Spec\) such that \(T = \sum_{i=1}^{n} T_i\).

Proof. We use Proposition 11 to write \(T\) as \(\sum_{i=1}^{k} P_iTQ_i\). By construction, the rank of \(T\) is the sum of the ranks of the individual terms, and by Lemma 9 each term of rank \(m\) can be written as a sum of \(m\) rank one operators in \(Spec\), for any \(m\).

Acknowledgement

The author wishes to thank David R. Larson for helpful conversations during the writing of this paper.
REFERENCES

Department of Mathematics, Illinois Wesleyan University, Bloomington, Illinois 61702
E-mail address: kcoates@sun.iwu.edu