Paraexponentials, Muckenhoupt weights, and resolvents of paraproducts
HTML articles powered by AMS MathViewer
- by María C. Pereyra and Lesley A. Ward
- Proc. Amer. Math. Soc. 126 (1998), 135-144
- DOI: https://doi.org/10.1090/S0002-9939-98-04400-1
- PDF | Request permission
Abstract:
We analyze the stability of Muckenhoupt’s $\mathbf {RH}_{\mathbf {p}}^{\mathbf {d}}$ and $\mathbf {A}_{\mathbf {P}}^{\mathbf {d}}$ classes of weights under a nonlinear operation, the $\lambda$-operation. We prove that the dyadic doubling reverse Hölder classes $\mathbf {RH}_{\mathbf {p}}^{\mathbf {d}}$ are not preserved under the $\lambda$-operation, but the dyadic doubling $A_p$ classes $\mathbf {A}_{\mathbf {P}}^{\mathbf {d}}$ are preserved for $0\leq \lambda \leq 1$. We give an application to the structure of resolvent sets of dyadic paraproduct operators.References
- Stephen M. Buckley, Summation conditions on weights, Michigan Math. J. 40 (1993), no. 1, 153–170. MR 1214060, DOI 10.1307/mmj/1029004679
- Michael Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1104656
- Guy David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991. MR 1123480, DOI 10.1007/BFb0091544
- R. A. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65–124. MR 1114608, DOI 10.2307/2944333
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- A. Haar, Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. # 69, 331-371 (1910).
- R. Johnson and C. J. Neugebauer, Homeomorphisms preserving $A_p$, Rev. Mat. Iberoamericana 3 (1987), no. 2, 249–273. MR 990859, DOI 10.4171/RMI/50
- Yves Meyer, Ondelettes et opérateurs. II, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Opérateurs de Calderón-Zygmund. [Calderón-Zygmund operators]. MR 1085488
- María Cristina Pereyra, On the resolvents of dyadic paraproducts, Rev. Mat. Iberoamericana 10 (1994), no. 3, 627–664. MR 1308705, DOI 10.4171/rmi/163
- María Cristina Pereyra, On the resolvent of the dyadic paraproduct, and a nonlinear operation on $RH_p$ weights, Harmonic analysis and operator theory (Caracas, 1994) Contemp. Math., vol. 189, Amer. Math. Soc., Providence, RI, 1995, pp. 461–471. MR 1347031, DOI 10.1090/conm/189/02281
Bibliographic Information
- María C. Pereyra
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141
- Email: crisp@math.unm.edu
- Lesley A. Ward
- Affiliation: Department of Mathematics, Harvey Mudd College, Claremont, California 91711
- MR Author ID: 614761
- Email: lesley@math.rice.edu
- Received by editor(s): May 9, 1996
- Additional Notes: This research was supported in part by (CP) NSF grant #DMS-93-04580 and (LW) at MSRI by NSF grant #DMS-90-22140.
- Communicated by: J. Marshall Ash
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 135-144
- MSC (1991): Primary 42B99; Secondary 47A10
- DOI: https://doi.org/10.1090/S0002-9939-98-04400-1
- MathSciNet review: 1452819