Centroaffine surfaces in $\mathbb {R}^{4}$ with planar $\nabla$-geodesics
HTML articles powered by AMS MathViewer
- by Christine Scharlach and Luc Vrancken
- Proc. Amer. Math. Soc. 126 (1998), 213-219
- DOI: https://doi.org/10.1090/S0002-9939-98-04408-6
- PDF | Request permission
Abstract:
For (positive) definite surfaces in $\mathbb {R}^{4}$ there is a canonical choice of a centroaffine normal plane bundle, which induces a centroaffine invariant Ricci-symmetric connection $\nabla$. We classify all surfaces in $\mathbb {R}^{4}$ with planar $\nabla$-geodesics. It turns out that the resulting class of surfaces is umbilical with projectively flat induced connection and flat normal plane bundle.References
- Katsumi Nomizu and Takeshi Sasaki, Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J. 132 (1993), 63–90. MR 1253695, DOI 10.1017/S0027763000004645
- Katsumi Nomizu and Luc Vrancken, A new equiaffine theory for surfaces in $\mathbf R^4$, Internat. J. Math. 4 (1993), no. 1, 127–165. MR 1209963, DOI 10.1142/S0129167X9300008X
- Ch. Scharlach, Centroaffine differential geometry of surfaces in $\mathbb {R}^{4}$, Dissertation, Technische Universität Berlin, 1994.
- Christine Scharlach, Centroaffine first order invariants of surfaces in $\textbf {R}^4$, Results Math. 27 (1995), no. 1-2, 141–159. Festschrift dedicated to Katsumi Nomizu on his 70th birthday (Leuven, 1994; Brussels, 1994). MR 1317833, DOI 10.1007/BF03322278
- Ch. Scharlach, Centroaffine differential geometry of (positive) definite oriented surfaces in $\mathbb {R}^{4}$, Preprint No. 451/1995, FB Mathematik, TU Berlin, submitted.
- Luc Vrancken, Affine surfaces whose geodesics are planar curves, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3851–3854. MR 1283565, DOI 10.1090/S0002-9939-1995-1283565-8
Bibliographic Information
- Christine Scharlach
- Affiliation: Fachbereich Mathematik, MA 8-3, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany
- Email: cs@math.tu-berlin.de
- Luc Vrancken
- Affiliation: Departemente Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
- Email: luc.vrancken@wis.kuleuven.ac.be
- Received by editor(s): March 19, 1996
- Additional Notes: The authors were supported in part by the DFG-project “Affine differential geometry" at the TU Berlin.
The first author was supported in part by the DFG-Forschungsstipendium Scha 698/1-1.
The last author is a Senior Research Assistant of the National Fund for Scientific Research (Belgium). - Communicated by: Christopher Croke
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 213-219
- MSC (1991): Primary 53A15; Secondary 53B05, 53B25
- DOI: https://doi.org/10.1090/S0002-9939-98-04408-6
- MathSciNet review: 1452827