Primes of the form $p=1+m^2 +n^2$ in short intervals
HTML articles powered by AMS MathViewer
- by J. Wu
- Proc. Amer. Math. Soc. 126 (1998), 1-8
- DOI: https://doi.org/10.1090/S0002-9939-98-04414-1
- PDF | Request permission
Abstract:
In this note, we prove that for every $\theta \ge {\frac {115}{121}}$ and $x\ge x_{0}(\theta )$, the short interval $(x, x+x^{\theta }]$ contains at least one prime number of the form $p=1+m^{2}+n^{2}$ with $(m,n)=1$. This improves a similar result due to Huxley and Iwaniec, which requires $\theta \ge {\frac {99}{100}}$.References
- William John Ellison, Les nombres premiers, Publications de l’Institut de Mathématique de l’Université de Nancago, No. IX, Hermann, Paris, 1975 (French). En collaboration avec Michel Mendès France. MR 0417077
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- M. N. Huxley and H. Iwaniec, Bombieri’s theorem in short intervals, Mathematika 22 (1975), no. 2, 188–194. MR 389790, DOI 10.1112/S0025579300006069
- H. Iwaniec, The half dimensional sieve, Acta Arith. 29 (1976), no. 1, 69–95. MR 412134, DOI 10.4064/aa-29-1-69-95
- Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2nd ed., Cours Spécialisés [Specialized Courses], vol. 1, Société Mathématique de France, Paris, 1995 (French). MR 1366197
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Jie Wu, Distribution des nombres $\scr B$-libres dans de petits intervalles, J. Théor. Nombres Bordeaux 5 (1993), no. 1, 151–163 (French). MR 1251234, DOI 10.5802/jtnb.85
- J. Wu, Sur l’équation $p+2=P_2$ dans les petits intervalles, J. London Math. Soc. (2) 49 (1994), no. 1, 61–72 (French). MR 1253011, DOI 10.1112/jlms/49.1.61
Bibliographic Information
- J. Wu
- Affiliation: Laboratoire de Mathématiques, Institut Elie Cartan – CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandœuvre–lès–Nancy, France
- Email: wujie@iecn.u-nancy.fr
- Received by editor(s): December 30, 1994
- Communicated by: Dennis A. Hejhal
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1-8
- MSC (1991): Primary 11N05, 11N36
- DOI: https://doi.org/10.1090/S0002-9939-98-04414-1
- MathSciNet review: 1452833