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ON THE EQUIVALENCE OF A THEOREM OF KISYŃSKI

AND THE HILLE-YOSIDA GENERATION THEOREM

WOJCIECH CHOJNACKI

(Communicated by Palle E. T. Jorgensen)

Abstract. We show that a theorem of Kisyński on the generation of Banach-
algebra homomorphisms of certain convolution algebras is equivalent to the
Hille-Yosida theorem on the generation of operator-valued one-parameter semi-
groups.

1. Introduction

Let F be either the field R of real numbers or the field C of complex numbers,
and let R+ be the set of all positive numbers. For each λ ∈ R, denote by ελ the
function

ελ(t) = eλt (t ∈ R+).

Let ω be a non-negative number. Let L1
ω(R+,F) be the space of equivalence classes

(under equality almost everywhere) of Lebesgue measurable F-valued functions f on
R+ for which |f |εω is Lebesgue integrable. With the addition and scalar multiplica-
tion derived from the pointwise addition and scalar multiplication of the functions,
and with the norm given by

‖f‖1,ω =

∫
R+

|f(t)|eωt dt

(where the same symbol f is used to denote both a function and its equivalence
class), L1

ω(R+,F) is a Banach space over F. With convolution

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s) ds (a.e. t ∈ R+)

as the product, it becomes a Banach algebra over F. When F is understood,
L1
ω(R+,F) will be abbreviated to L1

ω(R+).
Hereafter all Banach algebras will be assumed to be over F. Any particular

choice of the ground field F will be inessential for the validity of results.
Let A be a Banach algebra (with identity or not). An indexed family {rλ}λ∈U of

elements of A, where U is a subset of F, is called a pseudo-resolvent if the following
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Hilbert equation is satisfied:

rλ − rµ = (µ− λ)rλrµ (λ, µ ∈ U).(1)

Direct verification shows that, for each non-negative number ω, {ε−λ}λ∈(ω,+∞)

is a pseudo-resolvent in L1
ω(R+) satisfying

‖ε∗n−λ‖1,ω = ‖ε−λ‖n1,ω =
1

(λ− ω)n
(λ ∈ (ω,+∞), n ∈ N),(2)

where

f∗n = f ∗ · · · ∗ f︸ ︷︷ ︸
n times

for any f ∈ L1
ω(R+). For a class of pseudo-resolvents defined over (ω,+∞) and

satisfying a growth condition resembling (2) (namely condition (i) from Theorem 1
stated below), {ε−λ}λ∈(ω,+∞) is universal. This is a consequence of the following
result of J. Kisyński [4]:

Theorem 1 (Kisyński). Let A be a Banach algebra, let ω be a non-negative num-
ber, let {rλ}λ∈(ω,+∞) be a pseudo-resolvent in A, and let

M = sup{(λ− ω)n‖rnλ‖ : n ∈ N, λ ∈ (ω,+∞)}.(3)

Then the following conditions are equivalent:

(i) M < +∞;
(ii) there exist a continuous homomorphism T : L1

ω(R+) → A such that T (ε−λ) =
rλ for each λ ∈ (ω,+∞).

Furthermore, if a continuous homomorphism T : L1
ω(R+) → A satisfying T (ε−λ) =

rλ for each λ ∈ (ω,+∞) exists, then it is unique and ‖T ‖ = M .

The original statement of the above theorem deals only with the case ω = 0,
but generalisation to the case ω > 0 is straightforward. The theorem has a number
of interesting applications that include: 1◦ a result concerning the generation of
one-parameter integrated semigroups; 2◦ a result concerning the generation of a
one-parameter semigroup, acting on the bidual E∗∗ of a Banach space E, such that
the semigroup trajectories passing through elements of the ∗-weak sequential closure
of E in E∗∗ are ∗-weakly Borel measurable; 3◦ a generalisation of the Trotter-Kato
theorem on the convergence of sequences of one-parameter semigroups. Kisyński
has given two proofs of Theorem 1. One of them is straightforward and relies
on modification of the approximation argument used by K. Yosida in his proof
of the Hille-Yosida theorem. The other of Kisyński’s proofs is more involved. It
is based on an idea originally conceived by W. Arendt and further pursued by
B. Henning and F. Neubrander (cf. [1, 3, 5]), and draws upon a characterisation,
due to D. V. Widder, of the Laplace transforms of functions in L∞(R+).

The aim of this note is to show that Theorem 1 can be derived directly from
the Hille-Yosida theorem. As shown by Kisyński, the Hille-Yosida theorem is a
consequence of Theorem 1. Both theorems are therefore equivalent. Note that the
Hille-Yosida theorem, concerning the generation of homomorphisms defined on the
additive semigroup [0,+∞) and taking values in the algebra of all linear continuous
operators on a Banach space, does not directly extend to deal with homomorphisms
taking values in an arbitrary Banach algebra. It is only by changing the domain of
homomorphisms from [0,+∞) to L1

ω(R+), as done in Theorem 1, that the case of
Banach-algebra homomorphisms can be successfully treated.



EQUIVALENCE OF THEOREMS 493

2. A result on the regular representation

We begin by presenting a simple but useful result from the theory of represen-
tations of Banach algebras.

Let A be a commutative Banach algebra. A net {eλ}λ∈Λ in A, where Λ is a
directed set, is an approximate identity for A if

lim
λ∈Λ

eλx = x (x ∈ A).(4)

An approximate identity {eλ}λ∈Λ will be termed metric if

lim sup
λ∈Λ

‖eλ‖ ≤ 1.(5)

Let L(A) be the Banach algebra of all bounded linear operators from A into itself
with the norm

‖T ‖ = sup
‖x‖≤1

‖Tx‖ (T ∈ L(A)).

For each x ∈ A, let ρx be the operator in L(A) given by

ρxy = xy (y ∈ A).

It is readily verified that the mapping ρ : x 7→ ρx is a homomorphism of A into
L(A). It is called the regular representation of A on A. Denote by ρA the image
of A via ρ. We can now prove the following result:

Proposition 1. Let A be a commutative Banach algebra possessing a metric ap-
proximate identity. Then ρ is an isometry and ρA is a closed subalgebra of L(A).

Proof. For each x ∈ A, we have

‖ρx‖ = sup
‖y‖≤1

‖xy‖ ≤ ‖x‖.(6)

Let {eλ}λ∈Λ be a metric approximate identity for A. Clearly, for each λ ∈ Λ,

‖ρxeλ‖ ≤ ‖ρx‖ ‖eλ‖.
Rewriting (4) as limλ∈Λ ρxeλ = x, we see that

‖x‖ ≤ ‖ρx‖ lim inf
λ∈Λ

‖eλ‖(7)

and further, in view of (5),

‖x‖ ≤ ‖ρx‖.
Combining the latter inequality with (6), we find that ρ is an isometry. Since A
is complete, so too is its isometric image ρA. Now, since L(A) is complete, ρA is
closed in L(A).

Note that condition (5) appearing in the definition of a metric approximate
identity can replaced by the condition

lim
λ∈Λ

‖eλ‖ = 1,(8)

which perhaps better justifies the qualification ‘metric’. Indeed, if we let x be any
non-zero element of A, then (6) and (7) imply that

lim inf
λ∈Λ

‖eλ‖ ≥ 1

for every approximate identity {eλ}λ∈Λ. Now the equivalence of (5) and (8) is
obvious.
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3. Renorming Banach algebras

In this section, we establish a theorem about renorming Banach algebras, which
will be useful in the subsequent considerations.

Theorem 2. Let A be a commutative Banach algebra, let ω be a non-negative
number, and let {rλ}λ∈(ω,+∞) be a pseudo-resolvent in A for which M defined in
(3) is finite. Then there exists a submultiplicative norm |||·||| on A such that

|||x||| ≤ ‖x‖ ≤M |||x||| (x ∈ A)(9)

and

|||rλ||| ≤ 1

λ− ω
(λ ∈ (ω,+∞)).(10)

Proof. Fix λ ∈ (ω,+∞) arbitrarily. Set

sλ = (λ− ω)rλ.

Borrowing an idea from [2], for each x ∈ A, consider a representation of x in the
form

x =

∞∑
k=0

aks
k
λ,(11)

where ak ∈ A and only finitely many ak are different from zero. Note that while
A might not have an identity and while s0λ standing alone might have no obvious
meaning, we can always interpret a0s

0
λ as a0. Set

|||x|||λ = inf

∞∑
k=0

‖ak‖,

where the infimum is taken over all possible representations of x in the form (11).
It is plain that |||sλ|||λ ≤ 1, or equivalently

|||rλ|||λ ≤ 1

λ− ω
.(12)

We claim that |||·|||λ is a submultiplicative pseudonorm. Indeed, if y=
∑∞

k=0 bks
k
λ,

then xy =
∑∞

k=0 cks
k
λ, where ck =

∑k
l=0 ak−lbl. Hence

|||xy|||λ ≤
∞∑
k=0

‖ck‖ ≤
∞∑
k=0

0≤l≤k

‖ak−l‖ ‖bl‖ =

∞∑
k=0

‖ak‖
∞∑
l=0

‖bl‖.

Replacing the rightmost sums by the respective infima taken over all possible rep-
resentations (11) of x and y, we obtain |||xy|||λ ≤ |||x|||λ |||y|||λ. The subadditivity
and homogeneity of |||·|||λ are established in a similar fashion.

We now prove that

|||x|||λ ≤ ‖x‖ ≤M |||x|||λ (x ∈ A).(13)

Since |||·|||λ is a pseudonorm, this will in particular show that |||·|||λ is a norm. First,
note that any x ∈ A can be written as x = x+0sλ +0s2λ + . . . . It follows from this
that |||x|||λ ≤ ‖x‖. Next, observe that ‖skλ‖ ≤ M for each k ∈ N. Therefore if x is
given by (11), then ‖x‖ ≤M

∑∞
k=0 ‖ak‖, and so ‖x‖ ≤M |||x|||λ.

We now show that

|||rλ|||µ ≤ 1

λ− ω
(µ ∈ [λ,+∞)).(14)
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Fix µ ∈ [λ,+∞). Since rλ = rµ + (µ− λ)rµrλ and because of (12), we have

|||rλ|||µ ≤ |||rµ|||µ + (µ− λ) |||rµ|||µ |||rλ|||µ
≤ 1

µ− ω
+

µ− λ

µ− ω
|||rλ|||µ,

whence (
1− µ− λ

µ− ω

)
|||rλ|||µ ≤ 1

µ− ω
,

yielding (14).
Now set

|||x||| = lim sup
λ→∞

|||x|||λ (x ∈ A).

In view of (13), |||·||| is a well-defined submultiplicative norm on A which satisfies
(9). From (14) it follows that (10) is fulfilled.

4. Proof of Theorem 1

We are now ready to give a proof of Theorem 1.

Proof of Theorem 1. Suppose that T : L1
ω(R+) → A is a continuous homomorphism

such that T (ε−λ) = rλ for each λ ∈ (ω,+∞). A standard argument using, say, the
Stone-Weierstrass theorem shows that the set {ε−λ : λ ∈ (ω,+∞)} is linearly dense
in L1

ω(R+). Therefore T is uniquely determined by its values at the functions
ε−λ (λ ∈ (ω,+∞)). Taking into account (2), we see that M ≤ ‖T ‖, where M is
defined in (3). In particular, M is finite. Now—as a moment’s reflection reveals—to
complete the proof, it suffices to show that if, conversely, M is finite, then there
exists a continuous homomorphism T : L1

ω(R+) → A such that T (ε−λ) = rλ for
each λ ∈ (ω,+∞) and ‖T ‖ ≤M .

Suppose then that M is finite. Let B0 be the subalgebra of A generated by all
the rλ (λ ∈ (ω,+∞)). In view of (1), B0 is commutative. Let B be the closure of
B0 in A. Clearly, B is a commutative Banach algebra. By virtue of Theorem 2,
there exists a submultiplicative norm |||·||| onB satisfying (9) and (10). Let {λi}i∈N
be a sequence in (ω,+∞) diverging to infinity. For each i ∈ N, let

ei = λirλi .

We claim that {ei}i∈N is a metric approximate identity for B provided B is
taken with the norm |||·|||. Indeed, in view of (10),

|||ei||| ≤ λi
λi − ω

(i ∈ N),

so (5) is satisfied. Furthermore, for each µ ∈ (ω,+∞) and each i ∈ N with λi 6= µ,

eirµ =
λi

λi − µ
rµ − 1

λi − µ
ei.

Hence, for each µ ∈ (ω,+∞),

lim
i→∞

eirµ = rµ.

Since any x ∈ B0 is a linear combination of elements of the form rµ1 . . . rµk
(µ1, . . . , µk ∈ (ω,+∞)), it follows that

lim
i→∞

eix = x
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for each x ∈ B0. Now, taking into account that {ei}i∈N is bounded, we see that
the last equality holds for each x ∈ B. The claim is established.

Let ρ be the regular representation of B on B. Clearly, {ρrλ}λ∈(ω,+∞) is a
pseudo-resolvent in L(B). Using (1), it is easy to verify that all the ρrλ (λ ∈
(ω,+∞)) have a common null space N and a common range R. Restating the fact
that {ei}i∈N is an approximate identity for B as

lim
i→∞

λiρrλix = x (x ∈ B),

we immediately find that N is zero and R is dense in B. Therefore {ρrλ}λ∈(ω,+∞)

is the resolvent of a densely defined linear operator on B. More specifically, there
exists a linear operator A defined on R, taking values in B, such that, for each λ ∈
(ω,+∞), the inverse of ρrλ coincides with λ idB −A, where idB denotes the identity
operator on B (cf. [6, §8, Sec. 4, Thm. 1]). By (10) and the Hille-Yosida theorem
(cf. [6, §9, Sec. 7]), A is the generator of a one-parameter strongly continuous
semigroup {St}t∈[0,+∞) on B satisfying

|||St||| ≤ eωt (t ∈ [0,+∞)),(15)

where, of course, |||R||| = sup|||x|||≤1 |||Rx||| for any R ∈ L(B). Moreover,

ρrλ =

∫
R+

ε−λ(t)St dt (λ ∈ (ω,+∞)),(16)

where the integral is taken in the sense of the strong operator topology. For each
ϕ ∈ L1

ω(R+), define an element S(ϕ) of L(B) by setting

S(ϕ) =

∫
R+

ϕ(t)St dt.

It is easily verified that S : ϕ 7→ S(ϕ) is a homomorphism of L1
ω(R+) into L(B).

By (15)

|||S(ϕ)||| ≤ ‖ϕ‖1,ω (ϕ ∈ L1
ω(R+))(17)

and by (16)

S(ε−λ) = ρrλ (λ ∈ (ω,+∞)).(18)

Combining (17) and (18) with the fact that {ε−λ : λ ∈ (ω,+∞)} is linearly dense in
L1
ω(R+), we see that, for each ϕ ∈ L1

ω(R+), S(ϕ) belongs to the closed linear span
of {ρrλ : λ ∈ (ω,+∞)}. But, by Proposition 1, ρB is closed in L(B). Therefore
S(ϕ) is a member of ρB. Since, again by Proposition 1, ρ is isometry, it follows
that, for each ϕ ∈ L1

ω(R+), there exists a unique element T (ϕ) of B such that

ρT (ϕ) = S(ϕ) and |||T (ϕ)||| = |||S(ϕ)|||.
Clearly, T : ϕ 7→ T (ϕ) is a homomorphism of L1

ω(R+) into B. Moreover, by (18),

T (ε−λ) = rλ (λ ∈ (ω,+∞)).

In view of (9) and (17), for each x ∈ B and each ϕ ∈ L1
ω(R+),

‖T (ϕ)x‖ ≤M |||T (ϕ)x||| ≤M |||T (ϕ)||| |||x|||
= M |||S(ϕ)||| |||x||| ≤M ‖ϕ‖1,ω |||x||| ≤M ‖ϕ‖1,ω ‖x‖.

Hence ‖T ‖ ≤M , which completes the proof.
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