On the asymptoticity aspect of Hyers-Ulam stability of mappings
HTML articles powered by AMS MathViewer
- by D. H. Hyers, G. Isac and Th. M. Rassias
- Proc. Amer. Math. Soc. 126 (1998), 425-430
- DOI: https://doi.org/10.1090/S0002-9939-98-04060-X
- PDF | Request permission
Abstract:
The object of the present paper is to prove an asymptotic analogue of Th. M. Rassias’ theorem obtained in 1978 for the Hyers-Ulam stability of mappings.References
- J. Ralph Alexander, Charles E. Blair, and Lee A. Rubel, Approximate versions of Cauchy’s functional equation, Illinois J. Math. 39 (1995), no. 2, 278–287. MR 1316538
- Herbert Amann, Fixed points of asymptotically linear maps in ordered Banach spaces, J. Functional Analysis 14 (1973), 162–171. MR 0350527, DOI 10.1016/0022-1236(73)90048-7
- Herbert Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620–709. MR 415432, DOI 10.1137/1018114
- Nguyên Phuong Các and Juan A. Gatica, Fixed point theorems for mappings in ordered Banach spaces, J. Math. Anal. Appl. 71 (1979), no. 2, 547–557. MR 548782, DOI 10.1016/0022-247X(79)90208-7
- Jacek Chmieliński, On the stability of the generalized orthogonality equation, Stability of mappings of Hyers-Ulam type, Hadronic Press Collect. Orig. Artic., Hadronic Press, Palm Harbor, FL, 1994, pp. 43–57. MR 1304268
- P. D. T. A. Elliott, Cauchy’s functional equation in the mean, Adv. in Math. 51 (1984), no. 3, 253–257. MR 740585, DOI 10.1016/0001-8708(84)90010-0
- Roman Ger, On functional inequalities stemming from stability questions, General inequalities, 6 (Oberwolfach, 1990) Internat. Ser. Numer. Math., vol. 103, Birkhäuser, Basel, 1992, pp. 227–240. MR 1213010, DOI 10.1007/978-3-0348-7565-3_{2}0
- R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43 (1995), 143–151.
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Donald H. Hyers and Themistocles M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125–153. MR 1181264, DOI 10.1007/BF01830975
- George Isac, Opérateurs asymptotiquement linéaires sur des espaces localement convexes, Colloq. Math. 46 (1982), no. 1, 67–72 (French). MR 672364, DOI 10.4064/cm-46-1-67-72
- George Isac and Themistocles M. Rassias, On the Hyers-Ulam stability of $\psi$-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131–137. MR 1204135, DOI 10.1006/jath.1993.1010
- George Isac and Themistocles M. Rassias, Stability of $\Psi$-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219–228. MR 1375983, DOI 10.1155/S0161171296000324
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
- Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300. MR 507327, DOI 10.1090/S0002-9939-1978-0507327-1
- Themistocles M. Rassias and Peter emrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), no. 2, 325–338. MR 1209322, DOI 10.1006/jmaa.1993.1070
- Fulvia Skof, On the approximation of locally $\delta$-additive mappings, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), no. 4-6, 377–389 (1986) (Italian, with English summary). MR 929697
- Fulvia Skof, On the stability of functional equations on a restricted domain and a related topic, Stability of mappings of Hyers-Ulam type, Hadronic Press Collect. Orig. Artic., Hadronic Press, Palm Harbor, FL, 1994, pp. 141–151. MR 1304278
Bibliographic Information
- D. H. Hyers
- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113
- G. Isac
- Affiliation: Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario, Canada K7K 5L0
- Th. M. Rassias
- Affiliation: Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
- Received by editor(s): December 11, 1995
- Received by editor(s) in revised form: May 21, 1996, and July 29, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 425-430
- MSC (1991): Primary 39B72, 47H15
- DOI: https://doi.org/10.1090/S0002-9939-98-04060-X
- MathSciNet review: 1415589