A REMARK ON GELFAND-KIRILLOV DIMENSION

S. PAUL SMITH AND JAMES J. ZHANG

Abstract. Let A be a finitely generated non-PI Ore domain and Q the quotient division algebra of A. If C is the center of Q, then $\text{GKdim } C \leq \text{GKdim } A - 2$.

Throughout k is a commutative field and \dim_k is the dimension of a k-vector space. Let A be a k-algebra and M a right A-module. The Gelfand-Kirillov dimension of M is

$$\text{GKdim } M = \sup_{V,M_0} \lim_{n \to \infty} \log_n \dim_k M_0 V^n$$

where the supremum is taken over all finite dimensional subspaces $V \subset A$ and $M_0 \subset M$. If $F \supset k$ is another central subfield of A, we may also consider the Gelfand-Kirillov dimension of M over F which will be denoted by GKdim_F to indicate the change of the field. We refer to [BK], [GK] and [KL] for more details.

Let Z be a central subdomain of A. Then A is localizable over Z and the localization is denoted by A_Z. For any right A-module M, $M \otimes A_Z$ is denoted by M_Z. Let F be the quotient field of Z. The first author [Sm, 2.7] proved the following theorem:

Let A be an almost commutative algebra and Z a central subdomain. Suppose M is a right A-module such that $M_Z \neq 0$. Then

$$\text{GKdim } M \geq \text{GKdim}_F M_Z + \text{GKdim } Z.$$

As a consequence of this, if A is almost commutative but non-PI and Z is a central subalgebra such that every nonzero element in Z is regular in A, then $\text{GKdim } Z \leq \text{GKdim } A - 2$.

It is natural to ask if the above theorem (and hence the consequence) is true for all algebras. In this paper we will precisely prove this.

Theorem 1. Let A be an algebra and Z a central subdomain. Suppose M is a right A-module such that $M_Z \neq 0$. Then

$$\text{GKdim } M \geq \text{GKdim}_F M_Z + \text{GKdim } Z.$$

An algebra is called **locally PI** if every finitely generated subalgebra is PI. As a consequence of Theorem 1, we have

Received by the editors July 12, 1996 and, in revised form, August 20, 1996.

1991 Mathematics Subject Classification. Primary 16P90.

Key words and phrases. Gelfand-Kirillov dimension.

This research was supported in part by the NSF.
Corollary 2. Let A be algebra and Z a central subdomain. If A_Z is nonzero, then
$$\text{GKdim } A \geq \text{GKdim}_F A_Z + \text{GKdim } Z.$$
Furthermore, if A_Z is not locally PI, then
$$\text{GKdim } A \geq 2 + \text{GKdim } Z.$$

For the second inequality in Corollary 2, Z need not be a domain. Let Z be any central subalgebra of A of finite GKdimension such that A_Z is not locally PI. By the Noether normalization theorem, there is a subalgebra $Z_1 \subset Z$ isomorphic to the polynomial ring on d variables where $d = \text{GKdim } Z$. Since $A_Z = (A_{Z_1})_Z$, A_{Z_1} is nonzero and not locally PI. Hence, by Corollary 2, $\text{GKdim } Z_1 \leq \text{GKdim } A - 2$. Therefore $\text{GKdim } Z = \text{GKdim } Z_1 \leq \text{GKdim } A - 2$.

A stronger version of Corollary 2 also holds. We need another invariant defined by Gelfand and Kirillov. Let A be an algebra. The **Gelfand-Kirillov transcendence degree** of A is
$$T\text{deg } A = \sup \inf V \cdot b \text{GKdim } k[bV]$$
where V ranges over all finite dimensional subspaces of A and b ranges over the regular elements of A. If A is a commutative domain, then both GKdim A and $T\text{deg } A$ are equal to the classical transcendence degree of A, denoted by $\text{trdeg } A$. If $F \supset k$ is a central field of A, the Gelfand-Kirillov transcendence degree of A over F will be denoted by $T\text{deg}_F$ to indicate the change of the field.

Theorem 3. Let A be a semiprime Goldie algebra and Q the classical quotient algebra of A. Let F be a central subfield of Q. Then
$$T\text{deg } Q \geq T\text{deg}_F Q + \text{trdeg } F.$$
If moreover A is not locally PI, then
$$\text{GKdim } A \geq 2 + \text{GKdim } F.$$

The statement in the abstract is an obvious consequence of Theorem 3.

We now give the proofs. For simplicity a **subspace** means a finite dimensional subspace over k and a **subframe** of an algebra means a subspace containing the identity. Our proofs are based on the following easy observation.

Lemma 4. Let $F \supset k$ be a commutative field and M a right F-module. Let $M_0 \subset M$ and $W \subset F$ be subspaces over k. Then
$$\dim_k M_0 W \geq (\dim_F M_0 F)(\dim_k W).$$

Proof. Pick a basis of $M_0 F$ over F, say $\{x_1, \cdots, x_p\} \subset M_0$. Then $M_0 F = \oplus_{i=1}^p x_i F$ and hence $M_0 W \supset \oplus_{i=1}^p x_i W$. Therefore $\dim_k M_0 W \geq (\dim_F M_0 F)(\dim_k W)$. ∎

Proof of Theorem 1. Since Z is central, by the proof of [KL, 4.2], we have $\text{GKdim } M \geq \text{GKdim } M_Z$. By [KL, 4.2], $\text{GKdim } Z = \text{GKdim } F$ where F is the quotient field of Z. Hence it suffices to show $\text{GKdim } M_Z \geq \text{GKdim}_F M_Z + \text{GKdim } F$. Therefore we may assume $Z = F$ is a central field of A, and we need to show that $\text{GKdim } M \geq \text{GKdim}_F M + \text{GKdim } F$. Let d be any number less than $\text{GKdim } F$. Then there exists a subframe $S \subset F$ such that $\dim_k S^n \geq n^d$ for all $n \gg 0$. Let e be any number less than $\text{GKdim}_F M$. Then there exist a subspace $M_0 \subset M$, and a subframe $V \subset A$
such that \(\dim_F M_0 F(VF)^n \geq n^e \) for infinitely many \(n \). Since \(A \supseteq F \), we may assume \(V \supset S \). Since \(F \) is central, \(M_0 F(VF)^n = M_0 V^n F \). By Lemma 4,
\[
\dim_k M_0 V^{2n} \geq \dim_k M_0 V^n S^n \geq (\dim_F M_0 V^n F)(\dim_k S^n) \geq n^e n^d = n^{e+d}
\]
for infinitely many \(n \). Hence \(\text{GKdim} M \geq e + d \). By the choices of \(e \) and \(d \), we obtain \(\text{GKdim} M \geq \text{GKdim}_F M + \text{GKdim} F \) as desired.

\textbf{Proof of Corollary 2}. The first inequality follows from Theorem 1.1 by letting \(M = A \). If \(A_Z \) is not locally PI, then \(\text{GKdim}_F A_Z > 1 \) by [SSW], and \(\text{GKdim}_F A_Z \geq 2 \) by [Be]. Hence the second inequality follows.

As pointed out in [Sm, p. 37] the inequalities in Corollary 2 may be strict even if \(Z \) is the maximal central subring. By a result of M. Lorenz [Lo] the same example in [Sm, p. 37] shows also that the inequalities in Theorem 3 may be strict.

The proof of Theorem 3 is similar to that of Theorem 1.

\textbf{Proof of Theorem 3}. Since \(F \) is commutative, for any \(d < \text{trdeg}_F (= \text{GKdim} F) \), there is a subframe \(S \subset F \) such that \(\dim_k S^n \geq n^d \) for all \(n \gg 0 \). Let \(e \) be any number less than \(\text{Tdeg}_F Q \). By the proof of [Zh, 3.1] there is a subframe \(V \subset A \) such that for every regular element \(b \in Q \), \(\text{GKdim} F[bVF] > e \). This is equivalent to saying that, for every regular element \(b \in Q \), \(\dim_F (F + bVF)^n \geq n^e \) for infinitely many \(n \). We may assume \(V \supset S \). Since \(F \) is central, \(\dim_F (k + bV)^n bV F = \dim_F (F + bVF)^n \). By Lemma 4,
\[
\dim_k (k + bV)^n (bS)^n \geq (\dim_F (F + bVF)^n)(\dim_k S^n).
\]
Hence
\[
\dim_k (k + bV)^{2n} \geq \dim_k (k + bV)^n (bS)^n \geq n^e n^d = n^{e+d}
\]
for infinitely many \(n \). This means that \(\text{GKdim} k[bV] \geq e + d \) and hence \(\text{Tdeg} Q \geq e + d \). By the choices of \(e \) and \(d \), \(\text{Tdeg} Q \geq \text{Tdeg}_F Q + \text{trdeg} F \).

Now we assume \(A \) is not locally PI. Then \(Q \) is not locally PI. By [SSW] and [Be], \(\text{GKdim}_F Q \geq 2 \) and by [Zh, 4.1 and 4.3], \(\text{Tdeg}_F Q \geq 2 \). Therefore by [Zh, 2.1 and 3.1]
\[
\text{GKdim} A \geq \text{Tdeg} A \geq \text{Tdeg} Q \geq \text{Tdeg}_F Q + \text{trdeg} F \geq 2 + \text{GKdim} F.
\]

If \(Z \) is a central subdomain of \(A \), we can similarly prove that \(\text{Tdeg} A \geq \text{Tdeg}_F A_Z + \text{trdeg} Z \) where \(F \) is the quotient field of \(Z \).

\textbf{References}

Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195

E-mail address: smith@math.washington.edu

E-mail address: zhang@math.washington.edu