Stability of weakly almost conformal mappings
HTML articles powered by AMS MathViewer
- by Baisheng Yan and Zhengfang Zhou
- Proc. Amer. Math. Soc. 126 (1998), 481-489
- DOI: https://doi.org/10.1090/S0002-9939-98-04079-9
- PDF | Request permission
Abstract:
We prove a stability of weakly almost conformal mappings in $W^{1, p}(\Omega ;\mathbf {R}^n)$ for $p$ not too far below the dimension $n$ by studying the $W^{1, p}$-quasiconvex hull of the set $\mathcal C_n$ of conformal matrices. The study is based on coercivity estimates from the nonlinear Hodge decompositions and reverse Hölder inequalities from the Ekeland variational principle.References
- Emilio Acerbi and Nicola Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), no. 2, 125–145. MR 751305, DOI 10.1007/BF00275731
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
- J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984), no. 3, 225–253. MR 759098, DOI 10.1016/0022-1236(84)90041-7
- Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890, DOI 10.1007/978-3-642-51440-1
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- De Figueiredo, D. G., “The Ekeland Variational Principle with Applications and Detours," Tata Institute Lecture, Springer-Verlag, Berlin, Heidelberg, New York, 1989.
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- Mariano Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. MR 1239172
- L. Greco and T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. H. Poincaré C Anal. Non Linéaire 11 (1994), no. 1, 17–35 (English, with English and French summaries). MR 1259100, DOI 10.1016/S0294-1449(16)30194-9
- Tadeusz Iwaniec, $p$-harmonic tensors and quasiregular mappings, Ann. of Math. (2) 136 (1992), no. 3, 589–624. MR 1189867, DOI 10.2307/2946602
- Tadeusz Iwaniec and Gaven Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), no. 1, 29–81. MR 1208562, DOI 10.1007/BF02392454
- T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143–161. MR 1288682, DOI 10.1515/crll.1994.454.143
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511, DOI 10.1007/978-3-540-69952-1
- Müller, S., Šverák, V. and Yan, B., Sharp stability results for almost conformal maps in even dimensions, submitted to Journ. Geom. Analysis.
- Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by H. H. McFaden. MR 994644, DOI 10.1090/mmono/073
- Šverák, V., Lower semicontinuity for variational integral functionals and compensated compactness, Proceedings of I.C.M., Zürich, 1994.
- Yan, B., Remarks about $W^{1,p}$-stability of the conformal set in higher dimensions, Ann. Inst. H. Poincaré, Analyse non linéaire, 13 (6), 1996.
- Yan, B., On rank-one convex and polyconvex conformal energy functions with slow growth, Proc. Roy. Soc. Edinb., Ser. A. (to appear)
- Yan, B., On $W^{1,p}$-quasiconvex hull of sets of matrices and weak convergence in Sobolev spaces, preprint, 1995.
- Kewei Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 3, 313–326. MR 1205403
Bibliographic Information
- Baisheng Yan
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 348214
- Email: yan@math.msu.edu
- Zhengfang Zhou
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Email: zfzhou@math.msu.edu
- Received by editor(s): February 26, 1996
- Received by editor(s) in revised form: August 12, 1996
- Communicated by: Albert Baernstein II
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 481-489
- MSC (1991): Primary 49J10, 35J50, 30C62
- DOI: https://doi.org/10.1090/S0002-9939-98-04079-9
- MathSciNet review: 1415344