Semiclassical limit of the nonlinear Schrödinger equation in small time
HTML articles powered by AMS MathViewer
- by E. Grenier
- Proc. Amer. Math. Soc. 126 (1998), 523-530
- DOI: https://doi.org/10.1090/S0002-9939-98-04164-1
- PDF | Request permission
Abstract:
We study the semi-classical limit of the nonlinear Schrödinger equation for initial data with Sobolev regularity, before shocks appear in the limit system, and in particular the validity of the WKB method.References
- P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École Polytech., Palaiseau, 1993, pp. Exp. No. XIII, 13 (French). MR 1240554
- J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 309–323 (English, with French summary). MR 778977, DOI 10.1016/S0294-1449(16)30425-5
- Emmanuel Grenier, Limite semi-classique de l’équation de Schrödinger non linéaire en temps petit, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 6, 691–694 (French, with English and French summaries). MR 1323939
- Shan Jin, C. David Levermore, and David W. McLaughlin, The behavior of solutions of the NLS equation in the semiclassical limit, Singular limits of dispersive waves (Lyon, 1991) NATO Adv. Sci. Inst. Ser. B: Phys., vol. 320, Plenum, New York, 1994, pp. 235–255. MR 1321208
- A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308, DOI 10.1007/978-1-4612-1116-7
Bibliographic Information
- E. Grenier
- Affiliation: Laboratoire d’Analyse Numérique, CNRS - URA 189, Université Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France
- Email: grenier@ann.jussieu.fr
- Received by editor(s): August 13, 1996
- Communicated by: Jeffrey B. Rauch
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 523-530
- MSC (1991): Primary 35Q55, 35C20
- DOI: https://doi.org/10.1090/S0002-9939-98-04164-1
- MathSciNet review: 1425123