A representation theorem for Schauder bases in Hilbert space
HTML articles powered by AMS MathViewer
- by Stephane Jaffard and Robert M. Young
- Proc. Amer. Math. Soc. 126 (1998), 553-560
- DOI: https://doi.org/10.1090/S0002-9939-98-04168-9
- PDF | Request permission
Abstract:
A sequence of vectors $\{f_1,f_2,f_3,\dotsc \}$ in a separable Hilbert space $H$ is said to be a Schauder basis for $H$ if every element $f\in H$ has a unique norm-convergent expansion \[ f=\sum c_nf_n.\] If, in addition, there exist positive constants $A$ and $B$ such that \[ A\sum |c_n|^2\le \left \|\sum c_nf_n\right \|^2\le B\sum |c_n|^2,\] then we call $\{f_1,f_2,f_3,\dotsc \}$ a Riesz basis. In the first half of this paper, we show that every Schauder basis for $H$ can be obtained from an orthonormal basis by means of a (possibly unbounded) one-to-one positive self adjoint operator. In the second half, we use this result to extend and clarify a remarkable theorem due to Duffin and Eachus characterizing the class of Riesz bases in Hilbert space.References
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4, DOI 10.1080/00029890.1939.11998880
- S. V. Hruščëv, N. K. Nikol′skiĭ, and B. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980) Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 214–335. MR 643384
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399, DOI 10.1007/978-3-642-51633-7
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Bibliographic Information
- Stephane Jaffard
- Affiliation: Centre de Mathématiques et Leurs Applications, 61 Avenue du Président Wilson, 94235 Cachan cedex, France
- Robert M. Young
- Affiliation: Department of Mathematics, Oberlin College, Oberlin, Ohio 44074
- Received by editor(s): April 17, 1996
- Received by editor(s) in revised form: August 22, 1996
- Communicated by: Dale Alspach
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 553-560
- MSC (1991): Primary 46B15; Secondary 47A55
- DOI: https://doi.org/10.1090/S0002-9939-98-04168-9
- MathSciNet review: 1425127