A BOUND FOR THE NILPOTENCY OF A GROUP OF SELF HOMOTOPY EQUIVALENCES

YVES FÉLIX AND ANICETO MURILLO

(Communicated by Thomas Goodwillie)

Abstract. Let \(E_{\Omega}(X) \) be the group of homotopy classes of self-homotopy equivalences of \(X \) such that \(\Omega f \simeq 1_{\Omega X} \). We prove that \(E_{\Omega}(X) \) is a nilpotent group and that \(\text{nil} E_{\Omega}(X) \leq \text{cat}(X) - 1 \).

Given a pointed space \(X \) of the homotopy type of a CW-complex, let \(\mathcal{E}(X) \) denote the group of based homotopy classes of self homotopy equivalences of \(X \) ([1] is an excellent survey on this object). A considerable amount of work has been dedicated to obtaining finiteness properties, not only of \(\mathcal{E}(X) \), but also of certain interesting subgroups which preserve additional geometrical structure (see for example [2],[5],[6],[8]). This note goes in this direction: Let \(E_{\Omega}(X) \) be the kernel of the obvious map \(\mathcal{E}(X) \to \mathcal{E}(\Omega X) \) (i.e. homotopy classes of equivalences \(f: X \to X \) such that \(\Omega f \simeq 1_{\Omega X} \)) and, as usual, denote by \(\text{cat}(X) \) the Lusternik-Schnirelmann category of \(X \). Then we prove:

Theorem. If \(\text{cat} X \) is finite then \(E_{\Omega}(X) \) is a nilpotent group and \(\text{nil} E_{\Omega}(X) \leq \text{cat}(X) - 1 \).

Remarks. (a) Observe that \(E_{\Omega}(X) \) is a subgroup of the group \(\mathcal{E}_{\#}(X) \) consisting of homotopy classes of equivalences inducing the identity on the homotopy groups of \(X \). Therefore it is known to be nilpotent for finite complexes in view of [4, Thm. B]. Note also that, in general, this inclusion is proper as is shown in the following example comunicated to us by F. Cohen: It is known [4, Cor. 1.3] that, given a prime \(p \geq 3 \) and \(n \geq 1 \), \(p^n \) is an exponent for \(S^{2n+1} \) at \(p \). Therefore, if we consider \(\rho \) the \(p^n \)-th power map on the space \(X = (\Omega^{2n-3}S^{2n+1}(2n+1))_\rho(p) \) and call \(\sigma = 1 + \rho \), it follows that \(\pi_*(\sigma) = 1_{\pi_*(X)} \). On the other hand \(\Omega(\rho) \) is essential [9, Thm. 1] and thus \(\Omega(\sigma) \) cannot be homotopic to the identity.

(b) However, for rational spaces it is well known that \(E_{\Omega}(X) = \mathcal{E}_{\#}(X) \) since in this case \(\Omega X \) has the homotopy type of a product of Eilenberg-Mac Lane spaces of type \((n_i, \mathbb{Q})\) in which the integers \(\{n_i\} \) describe the degrees of a basis of \(\pi_*(X) \). Hence, the theorem above could be seen as a generalization of [6, Thm. 1].

The rest of the paper is devoted to the proof of the theorem above. To simplify the notation we shall not distinguish between a homotopy class and a map which represents it. Also, equality of homotopy classes (or maps) will often mean homotopy between its representatives.

Received by the editors August 19, 1996.
1991 Mathematics Subject Classification. Primary 55P10, 55M30.
To start, let us recall the characterization of the LS category of a space X given in [7]. The n-th Ganea fibration of X, $F_n(X) \rightarrow E_n(X) \xrightarrow{p_n} X$, is defined by an inductive procedure in the following way: p_0 is just the path fibration $\Omega X \rightarrow PX \xrightarrow{p_0} X$. Next consider C the homotopy cofibre of the inclusion $F_{n-1}(X) \rightarrow E_{n-1}(X)$ and extend p_{n-1} to a map $C \rightarrow X$. The associated fibration to this map $F_n(X) \rightarrow E_n(X) \xrightarrow{p_n} X$ is by definition the n-th Ganea fibration of X. $E_n(X)$ is called the n-th Ganea space for X. As a general picture we have:

$$
\begin{array}{c}
\Omega X \\
\downarrow \\
PX \xrightarrow{i_1} E_1(X) \\
\downarrow \\
p_0 \\
X
\end{array}
\quad
\begin{array}{c}
F_1(X) \\
\downarrow \\
\cdots
\end{array}
\quad
\begin{array}{c}
F_{n-1}(X) \\
\downarrow \\
p_{n-1} \\
E_n(X)
\end{array}
\quad
\begin{array}{c}
F_n(X) \\
\downarrow \\
p_n \\
X
\end{array}

Then, we shall make use of the following facts:

1. $	ext{cat } X \leq n$ if and only if p_n admits a homotopy section.
2. $F_n(X)$ has the homotopy type of the join of $n + 1$ copies of ΩX.
3. For each space X and each integer n, the fibration $E_n(X) \xrightarrow{p_n} X$ defines an augmented functor, that is to say, given $f: X \rightarrow Y$, there exists a (functorial) map $E_n(f): E_n(X) \rightarrow E_n(Y)$ such that the following diagram commutes:

$$
\begin{array}{ccc}
E_n(X) & \xrightarrow{E_n(f)} & E_n(Y) \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}
$$

Next, given a map $f: X \rightarrow X$ representing an element on $E_{\Omega}(X)$ define the length of f, $l(f)$, as the biggest integer n for which $fp_n = p_n$. Since $E_1(X)$ has the homotopy type of $\Sigma \Omega X$ and (up to homotopy) $p_1: \Omega X \rightarrow X$ is the adjoint to the identity, $l(f)$ is at least 1. Also, observe that if $l(f) = n$, then $fp_m = f$ for any $m \leq n$. Next, define G_n as the subgroup of $E_\Omega(X)$ consisting of equivalences of length at least n. Clearly $G_1 = E_\Omega(X)$ and $G_{n+1} \subset G_n$.

Lemma. $[G_1, G_n] \subset G_{n+1}$.

Proof. First, recall [10] that given a cofibration sequence $Y \rightarrow Z \rightarrow C$, the coaction $\nu: C \rightarrow \Sigma Y \vee C$ induces a natural action of the group $[\Sigma Y, X]$ on $[C, X]$. Explicitly, given $\beta \in [\Sigma Y, X]$ and $\alpha \in [C, X]$, define $\alpha^\beta = (\beta, \alpha) \circ \nu$. The orbits of this action are precisely $i_*^{-1}(h)$, $h \in [Z, X]$, with $i_*: [C, X] \rightarrow [Z, X]$ induced by i. That is to say, given maps $\alpha_1, \alpha_2: C \rightarrow X$, $\alpha_1i \sim \alpha_2i$ if and only if there exists $\beta: \Sigma Y \rightarrow X$ such that $\alpha_1^\beta = \alpha_2^\beta$.

Note also that given $\gamma \in [X, W]$ and $\varphi \in [C, C]$, $\gamma^\alpha = (\gamma \alpha)^\gamma$ and $\alpha^\beta \varphi = (\alpha \varphi)^{\beta_\varphi}$, with $\Sigma \varphi \in [\Sigma Y, \Sigma Y]$ induced by φ by collapsing Z. We return to the proof of the lemma. Let $f, g: X \rightarrow X$ be maps satisfying $fp_1 = p_1$ and $gp_n = p_n$. We will prove that $fgp_{n+1} = gf p_{n+1}$. For that we shall apply the considerations above to the cofibration sequence $F_n(X) \rightarrow E_n(X) \xrightarrow{i_n} E_{n+1}(X)$. Since $gp_n = p_n$
and $p_n = p_{n+1}i_{n+1}$, there exists $h: \Sigma F_n(X) \to X$ such that $gp_{n+1} = p_n^h$. Observe that:

(i) Since h factors as the composite $\Sigma F_n(X) \xrightarrow{k} \Sigma \Omega X \xrightarrow{p_1} X$, we have $fh = fp_1k = p_1k = h$.

(ii) On the other hand, since $\Omega f = 1$, via (2), it follows that $F_n(f) = *^{n+1}\Omega f = 1$.

Finally we can write:

$$fgp_{n+1} = fp_{n+1}h = (fp_{n+1})h = (fp_{n+1})^{h\Sigma F_n(f)} = (p_{n+1}E_{n+1}(f))^{h\Sigma F_n(f)} = p_{n+1}^{hE_{n+1}(f)} = gp_{n+1}E_{n+1}(f) = gfp_{n+1}. \quad \square$$

Proof of the theorem. Observe that if $\text{cat} \; X = m$ then $G_m = \{1\}$. Indeed, given $f \in G_n$ and in view of (1), $f = fp_m\sigma = p_m\sigma = 1$ with σ section of p_n. Hence, by lemma above we have a finite decreasing sequence of normal subgroups

$$E_{\Omega}(X) = G_1 \supset G_2 \supset \ldots \supset G_m = \{1\}$$

in which $[G_1, G_n] \subset G_{n+1}$ and thus the theorem follows. \hfill \square

References

DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ CATHOLIQUE DE LOUVAIN, 1348 LOUVAIN LA NEUVE, BELGIUM

E-mail address: felix@agel.ucl.ac.be

DEPARTAMENTO DE ALGEBRA, GEOMETRÍA Y TOPOLOGÍA, UNIVERSIDAD DE MÁLAGA, AP. 59, 29080-MÁLAGA, SPAIN

E-mail address: aniceto@agt.cie.uma.es

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use