A pointwise spectrum and representation of operators
HTML articles powered by AMS MathViewer
- by N. Bertoglio, Servet Martínez and Jaime San Martín
- Proc. Amer. Math. Soc. 126 (1998), 375-382
- DOI: https://doi.org/10.1090/S0002-9939-98-04428-1
- PDF | Request permission
Abstract:
For a self-adjoint operator $A:H\to H$ commuting with an increasing family of projections ${\mathcal {P}}=(P_{t})$ we study the multifunction $t\to \Gamma ^{\mathcal {T}}(t)=\bigcap \{\sigma _{I}:I$ an open set of the topology ${\mathcal {T}}$ containing $t\}$, where $\sigma _{I}$ is the spectrum of $A$ on $P_{I}H$. Let $m_{\mathcal {P}}$ be the measure of maximal spectral type. We study the condition that $\Gamma ^{\mathcal {T}}$ is essentially a singleton, $m_{\mathcal {P}}\{t:\Gamma ^{\mathcal {T}}(t)$ is not a singleton$\}=0$. We show that if ${\mathcal {T}}$ is the density topology and if $m_{\mathcal {P}}$ satisfies the density theorem, in particular if it is absolutely continuous with respect to the Lebesgue measure, then this condition is equivalent to the fact that $A$ is a Borel function of ${\mathcal {P}}$. If ${\mathcal {T}}$ is the usual topology then the condition is equivalent to the fact that $A$ is approched in norm by step functions $\sum \limits _{n\in \mathbb {N}}\Gamma ^{\mathcal {T}} (\alpha _{n})\langle P_{I_{n}} f,f\rangle$, where the set of intervals $\{I_{n}:n\in \mathbb {N}\}$ covers the set where $\Gamma ^{\mathcal {T}}$ is a singleton.References
- Walter Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596–605. MR 41, DOI 10.1090/S0002-9904-1939-07046-8
- Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330, DOI 10.1007/978-3-642-69512-4
- Casper Goffman, C. J. Neugebauer, and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–505. MR 137805
- I. C. Gohberg and M. G. Kreĭn, On a description of contraction operators similar to unitary ones, Funkcional. Anal. i Priložen. 1 (1967), 38–60 (Russian). MR 0213907
- P. Masani and M. Rosenberg, When is an operator the integral of a given spectral measure?, J. Functional Analysis 21 (1976), no. 1, 88–121. MR 0402528, DOI 10.1016/0022-1236(76)90031-8
- Mia-Hung Tan, On the convergence and continuity of functions, Bull. Math. Soc. Nanyang Univ. 1963 (1963), 77–118. MR 161947
- Stephen Scheinberg, Topologies which generate a complete measure algebra, Advances in Math. 7 (1971), 231–239 (1971). MR 286965, DOI 10.1016/S0001-8708(71)80004-X
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- N. Bertoglio
- Affiliation: Facultad de Matemática, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
- Email: nbertogl@riemann.mat.puc.cl
- Servet Martínez
- Affiliation: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática, Casilla 170-3, Correo 3, Santiago, Chile
- MR Author ID: 120575
- Email: smartine@dim.uchile.cl
- Jaime San Martín
- MR Author ID: 265399
- Email: jsanmart@dim.uchile.cl
- Received by editor(s): July 20, 1995
- Received by editor(s) in revised form: April 30, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 375-382
- MSC (1991): Primary 47A11, 47D15
- DOI: https://doi.org/10.1090/S0002-9939-98-04428-1
- MathSciNet review: 1459108