ENVELOPING SEMIGROUPS AND MAPPINGS
ONTO THE TWO-SHIFT

KENNETH BERG, DAVID GOVE, AND KAMEL HADDAD

(Communicated by Mary Rees)

Abstract. Enveloping semigroups of topological actions of semigroups G on compact spaces are studied. For zero dimensional spaces, and under modest conditions on G, the enveloping semigroup is shown to be the Stone-Čech compactification if and only if some Cartesian product has the two-shift as a factor. Examples are discussed showing that, unlike in the measure theory case, positive entropy does not imply the existence of such a factor even if the Cartesian product has large entropy.

Let G be a discrete multiplicative semigroup with at least one element g_0 such that $g \to g_0 g$ is injective. Let X be a compact Hausdorff space. We say $\sigma : G \times X \to X$, written $(g,x) \to \sigma_g(x)$, is an action of G on X, and we say (X,G,σ) is a G-flow, if $\sigma_{gh} = \sigma_g \circ \sigma_h$ for all $g,h \in G$. We sometimes refer to the flow X when G and σ are understood. We will assume that if $g_1 \neq g_2$ then there is at least one $x \in X$ such that $\sigma_{g_1}(x) \neq \sigma_{g_2}(x)$. Given a G-flow X let $E = E_X$ be the closure of $\{ \sigma_g : g \in G \}$ in X^X with the product topology. Clearly E is compact and it can easily be shown that E is a subsemigroup of X^X where $(\xi \eta)(x) = \xi(\eta(x))$ for $\xi, \eta \in X^X$ and $x \in X$. E is called the enveloping semigroup of X (the enveloping semigroup was first introduced by Ellis in [3]. Other sources in the literature dealing with enveloping semigroups include [1], [4] and [5]). Let $G_E = \{ \sigma_g : g \in G \}$. Observe $g \to \sigma_g$ is an injection of G onto the dense subset G_E of E.

Let C be the set of all continuous real valued functions with domain X and let B be the set of all bounded real valued functions with domain G. For $x \in X$ and $f \in C$ let $f_x \in B$ be defined by $f_x(g) = f(\sigma_g(x))$. Let $A = A(X) \subseteq B$ be the smallest uniformly closed algebra containing $\{ f_x : x \in X, f \in C \}$. We slightly abuse notation to use the same symbol f_x for the corresponding function defined on G_E. If $x \in X$, and $f \in C$ define $\overline{f_x} : E \to R$ by $\overline{f_x}(\eta) = f(\eta(x))$. Observe that each $\overline{f_x}$ is in $C_R(E)$, the space of continuous real valued functions on E. Clearly $\overline{f_x}$ is the continuous extension of f_x from G_E to E. It follows that every $\phi \in A$ has a (unique) continuous extension $\overline{\phi} : E \to R$.

Proposition 1. $\{ \overline{\phi} : \phi \in A \} = C_R(E)$. In particular, $A = B$ if and only if the embedding $g \to \sigma_g$ is a realization of the Stone-Čech compactification β of G.

Proof. It is clear that $\{ \overline{\phi} : \phi \in A \} \subseteq C_R(E)$ is a uniformly closed subalgebra of $C_R(E)$. If ξ and η are distinct elements of E then there is some $x \in X$ with
Clearly $$\xi(x) \neq \eta(x)$$. Choose $$f \in C$$ so that $$f(\xi(x)) \neq f(\eta(x))$$, and thus $$\overline{f}(\xi) \neq \overline{f}(\eta)$$. This shows that $$\{ \overline{\phi} : \phi \in A \}$$ separates points of $$E$$ and so, by the Stone-Weierstrass theorem, $$\{ \overline{\phi} : \phi \in A \} = CR(E)$$.

As is well-known, a realization of the Stone-Čech compactification of the discrete space $$G$$ consists of a compact space $$E$$ and an injective mapping $$g \to \sigma_g$$ of $$G$$ onto a dense subspace $$G_E$$ of $$E$$ such that:

1. The set $$G_E$$ is discrete as a subspace of $$E$$.
2. Every bounded function on $$G_E$$ extends to a continuous function on $$E$$.

In fact (1) follows from (2) and (2) is simply the assertion that $$A = B$$. We have assumed $$g \to \sigma_g$$ is injective, and $$G_E$$ is dense by the definition of $$E$$. This shows that $$E$$ is the Stone-Čech compactification when $$A = B$$. The converse assertion is an immediate consequence of (2).

Remark. A similar result holds if $$G$$ has a completely regular topology and the action $$\sigma$$ of $$G$$ on $$X$$ is jointly continuous.

Proposition 2. Let $$I$$ be any non-void index set. Let $$X^I$$ be the product space with the product topology and let $$\sigma^I$$ be the product action on $$X^I$$, defined by $$\sigma^I_i(x) = \sigma(x_i)$$ for $$x \in X_i$$ and $$i \in I$$. Then $$A(X^I) = A(X)$$.

Proof. Clearly $$A(X) \subseteq A(X^I)$$, so we establish the reverse inclusion. Let $$\pi_i(x) = x_i$$ for $$x \in X^I$$ and $$i \in I$$. Clearly $$\{ f \circ \pi_i : f \in C, \ i \in I \}$$ separates points of $$X^I$$. Given $$f \in CR(X^I)$$ and $$\epsilon > 0$$, it follows from the Stone-Weierstrass theorem that there exist a positive integer $$k$$, functions $$f^1, \ldots, f^k \in C$$, indices $$i_1, \ldots, i_k \in I$$, and a real polynomial $$p$$ of $$k$$ variables such that $$|f(x) - p(f^1(\pi_{i_1}(x)), \ldots, f^k(\pi_{i_k}(x)))| < \epsilon$$ for all $$x \in X^I$$. Examination of the $$\sigma^I$$ action shows that

$$|f(x) - p(f^{i_1}(x_{i_1}), \ldots, f^{i_k}(x_{i_k}))| < \epsilon.$$

Since $$A(X)$$ consists of the uniform closure of just such polynomial expressions, this inequality shows $$f \in A(X)$$.

We will apply the above results to actions on a totally disconnected space. We begin with a general definition of a shift space on a finite set.

Definition. Let $$\alpha$$ be a finite set with the discrete topology. Let $$X = \alpha^G$$ be the product space with the product topology. Let $$\sigma$$ be defined by $$(\sigma_g(x))_h = x_{hg}$$. We call $$(X, G, \sigma)$$ the $$G$$-shift on $$\alpha$$.

Remark. The mapping $$\sigma$$ defined above is an action, and $$g \neq h \implies \sigma_g \neq \sigma_h$$.

Proof. First observe $$\sigma_{gh}(x)_t = x_{tgh} = (\sigma_h(x))_{tg} = (\sigma_g(\sigma_h(x)))_t \ \forall g, h, t \in G$$ and $$x \in X$$. This shows $$\sigma_{gh} = \sigma_g \circ \sigma_h$$. Because $$X$$ has the product topology, evaluation $$x \to x_t$$ is continuous for fixed $$t$$ and $$g$$. But continuity of $$\sigma_g : X \to X$$ is equivalent to continuity of $$x \to (\sigma_g(x))_t = x_{tg}$$ at every $$x \in X$$ and for every $$t \in G$$. This shows each $$\sigma_g$$ is continuous. Finally, we have assumed the existence of an element $$g_0 \in G$$ such that $$g \to g_0g$$ is injective. Given distinct $$g$$ and $$h$$ in $$G$$ let $$x \in X$$ be such that $$x_{g_0} \neq x_{g_0h}$$. Then $$\sigma_g(x) \neq \sigma_h(x)$$ since $$(\sigma_g(x))_{g_0} \neq (\sigma_h(x))_{g_0}$$.

Proposition 3. Let $$(X, G, \sigma)$$ be a $$G$$-shift on some finite set $$\alpha$$ of cardinality greater than 1. Then $$A_X = B$$, and so $$E_X$$ is the Stone-Čech compactification of $$G$$.

Proof. Clearly it is sufficient to show that for any subset $U \subseteq G$, the characteristic function $\chi = \chi_U$ of U is in A. We can map α bijectively to $\{0, 1, \ldots, k-1\}$ for some $k > 1$ and for notational simplicity we assume that α in fact equals $\{0, 1, \ldots, k-1\} \subseteq \mathbb{R}$. Choose $g_0 \in G$ so $g \to g_0g$ is injective, and let $V = g_0U$. Define $\tilde{x} \in X$ as the characteristic function of V. Define $f : X \to \mathbb{R}$ by $f(x) = x_{g_0}$. Observe $f_\tilde{x}(g) = f(\sigma_g(\tilde{x})) = (\sigma_g(\tilde{x}))_{g_0} = \tilde{x}_{g_0g} = \chi(g)$.

Definition. If (X, G, σ) and (Y, G, τ) are flows then a continuous mapping $\Pi : X \to Y$ is called a flow mapping if $\tau_g(\Pi(x)) = \Pi(\sigma_g(x))$ for all $x \in X$ and $g \in G$. If also Π is surjective then we call Π a factor mapping of X onto Y and we call Y a factor of X.

Theorem 1. Let (X, G, σ) be an action of the discrete semigroup G on the compact totally disconnected Hausdorff space X, satisfying $g \neq h \implies \sigma_g \neq \sigma_h$. Assume that there is an element $g_0 \in G$ such that $g \to g_0g$ is injective. Let $A(X)$, B and E_X be as above. Let (Y, G, τ) be the G-shift on the two symbol set $\alpha = \{0, 1\}$. Assume that there is at least one $\tilde{y} \in Y$ such that $\{\tau_g(\tilde{y}) : g \in G\}$ is dense in Y (i.e., (Y, G, τ) is transitive). Then the following four statements are equivalent:

1. For some finite non-void index set I, the shift action (Y, G, τ) is a factor of the product action (X^I, G, σ^I).
2. For some non-void index set I, the shift action (Y, G, τ) is a factor of the product action (X^I, G, σ^I).
3. $A = B$.
4. E_X, together with the mapping $g \to \sigma_g$, is a realization of the Stone-Čech compactification of G.

Proof. Clearly (1) $\implies (2)$ and we have seen from Proposition 1 that $(3) \iff (4)$. Also (2) $\implies B = A(Y)$ by Proposition 3, but $A(Y) \subseteq A(X^I) = A(X)$ by Proposition 2, and $A(X) \subseteq B$. So (2) $\implies (3)$.

We complete the proof by showing $(3) \implies (1)$.

Assume (3) holds. Select \tilde{y} such that $\{\sigma_g(\tilde{y}) : g \in G\}$ is dense in Y. Since \tilde{y} has domain G and values in $\{0, 1\}$ it is an element of B. From (3) and by the Stone-Weierstrass theorem, there exist a positive integer k, functions f^1, \ldots, f^k in C, points $\tilde{x}_1, \ldots, \tilde{x}_k$ in X, and a polynomial p in k variables so that

$$|p(f^1_{\tilde{x}_1}(g), \ldots, f^k_{\tilde{x}_k}(g)) - \tilde{y}_g| < \frac{1}{2}$$

for all $g \in G$. Since X is totally disconnected, any two points of X can be distinguished by some continuous function that assumes only two values. Again using the Stone-Weierstrass theorem, we may rechoose k, p, and the f^i, and renumber the x_i so that, in addition to the above inequality, the range T of $p(f^1_{\tilde{x}_1}(g), \ldots, f^k_{\tilde{x}_k}(g))$ is a finite set. Let $\gamma \in (\frac{1}{2}, \frac{3}{2}) \setminus T$ and let χ be the characteristic function of $[\gamma, \infty)$. Define $\Pi : X^k \to Y$ by $\Pi(x_1, \ldots, x_k)(g) = \chi(p(f^1_{x_1}(g), \ldots, f^k_{x_k}(g)))$. The map Π is continuous on X since γ is continuous on T. Calculate

$$\tau_g(\Pi(x_1, \ldots, x_k))(g) = \Pi(x_1, \ldots, x_k)(gh) = \chi(p(f^1_{x_1}(gh), \ldots, f^k_{x_k}(gh)))$$

$$= \chi(p(f^1(\sigma_{gh}(x_1)), \ldots, f^k(\sigma_{gh}(x_k))))$$

$$= \chi(p(f^1(\sigma_g(\sigma_h(x_1))), \ldots, f^k(\sigma_g(\sigma_h(x_k))))) = \Pi(\sigma^I_h(x_1, \ldots, x_k))(g),$$

so Π is a flow mapping. Finally, $\Pi : X^I \to Y$ is surjective since $\Pi(\tilde{x}_1, \ldots, \tilde{x}_k) = \tilde{y}$.

The hypothesis in Theorem 1 requiring Y to be transitive is impractical as it may not be easily verifiable. In contrast, the transitivity of Y follows from the following modest condition on G, when the cardinality of G is infinite, which is easy to check:

Definition. G is said to satisfy the Separation Condition if the cardinality $|G|$ of G is infinite and if for all $h,k \in G$, $|\{g \in G : hg = k\}| < |G|$.

Theorem 2. If G satisfies the Separation Condition, then the shift space (Y,G,τ) is transitive.

We first need the lemma:

Lemma. Let G be an infinite semigroup and let G_0 and G_1 be a partition of G. Let y^c be the characteristic function of G_1. Then y^c has dense τ-orbit if and only if whenever F_0 and F_1 are disjoint finite subsets of G, there is an element $g \in G$ such that $F_0g \subseteq G_0$ and $F_1g \subseteq G_1$.

Proof (of Lemma). “if”: Pick $y \in Y$ and let F be a finite subset of G. Let $F_i = \{g \in G : yg = i\}, i = 0, 1$. Choose $g \in G$ such that $F_i g \subseteq G_i, i = 0, 1$. Pick $h_i \in F_i$. Then $(\sigma g y^c)h_i = y^c_h = i = yh_i$. This shows that given y and F, there is a g such that $\sigma g y^c$ agrees with y on F. That is, the orbit of y^c is dense in Y.

The converse is proven similarly.

Proof (of Theorem 2). We construct sets $G_i^0, i = 0, 1$, inductively, using transfinite induction to account for uncountable G. It will be clear from the construction that $G_i^0 \subseteq G_i^1$ if $\eta < \nu$.

For any ordinal η, we let $\overline{\eta}$ be the set of strict predecessors of η. Now let ξ be the least ordinal such that $|\overline{\xi}| = |G|$. Let \mathcal{F} consist of all ordered pairs of disjoint finite subsets of G. Let $\zeta \rightarrow (F_0^\zeta, F_1^\zeta)$ be a bijective mapping of $\overline{\xi}$ onto \mathcal{F}.

Set $G_0^0 = G_1^0 = \emptyset$.

Suppose that for some ordinal ζ with $|\overline{\zeta}| < |G|$ the sets G_0^ζ and G_1^ζ have been defined such that $G_0^\zeta \cap G_1^\zeta = \emptyset$ and $|G_i^\zeta| < |G|, i = 0, 1$. Choose $g_\zeta \in G$ such that the four sets $G_0^\zeta, G_1^\zeta, F_0^{\zeta}g_\zeta, F_1^{\zeta}g_\zeta$ are pairwise disjoint. Such a g_ζ exists since $|G_0^\zeta \cup G_1^\zeta \cup F_0^{\zeta} \cup F_1^{\zeta}| < |G|$ and since G satisfies the Separation Condition. Set $G_i^{\zeta+1} = G_i^\zeta \cup F_i^{\zeta}g_\zeta$. Then $G_0^{\zeta+1}$ and $G_1^{\zeta+1}$ have been defined, are disjoint, and have cardinality strictly less than that of G.

If ζ is a limit ordinal with $|\overline{\zeta}| < |G|$ and if $G_i^\eta, i = 0, 1, \eta < \zeta$, then set $H_i^{\zeta} = \bigcup_{\eta < \zeta} G_i^\eta$ and choose g_ζ so that $H_i^{\zeta}, H_i^{\zeta}, F_0^{\zeta}g_\zeta, F_1^{\zeta}g_\zeta$ are pairwise disjoint. Set $G_i^{\zeta} = H_i^{\zeta} \cup F_i^{\zeta}$.

Finally, set $G_0 = \bigcup_{\eta < \zeta} G_0^\eta$ and $G_1 = G \setminus G_0$. Let y^c be the characteristic function of G_1. It is now easy to check that if $(F_0^\zeta, F_1^\zeta) \in \mathcal{F}$, then g_ζ satisfies the condition of the lemma.

We now consider the case $G = (\mathbb{Z}, +)$, the integers under addition. We let $\sigma = \sigma_1$ and then $\sigma^\eta = \sigma_\eta$.

It is well-known that a mixing subshift of finite type has a Cartesian product with the full 2-shift as a factor (see [2]) and so the enveloping semigroup E is the Stone-Čech compactification β of \mathbb{Z}. The first theorem in [6] implies that no flow “constructed from minimal flows” can have $E = \beta$. Let us be more precise: A bounded function $F : \mathbb{Z} \rightarrow \mathbb{R}$ is called minimal if for every finite $F \subset \mathbb{Z}$ and every
\[\epsilon > 0 \text{ the set } \{ n \in \mathbb{Z} : |F(n + i) - F(i)| < \epsilon \forall i \in F \} \text{ is syndetic in } \mathbb{Z}. \] Let \(\mathcal{U} \) be the smallest uniformly closed algebra containing every minimal function. It is shown in [6] (Theorem 1) that \(\mathcal{U} \) is properly contained in \(B \), the algebra of bounded real valued functions defined on \(\mathbb{Z} \). A \(\mathbb{Z} \)-flow \(X \) is minimal if there are no closed invariant non-void proper subsets. This condition is equivalent to: For every \(x \in X \) and open set \(U \) containing \(x \), the set \(\{ n \in \mathbb{Z} : a^n(x) \in U \} \) is syndetic. From this it is easy to see that for a minimal flow \(f \) every \(f_x \) is a minimal function. It follows that every minimal flow \(X \) has \(A \neq B \). Moreover, if we take Cartesian products, subflows, or factors of flows satisfying \(A \subseteq \mathcal{U} \) then the resulting flow will also have \(A \subseteq \mathcal{U} \) and so \(E \neq \beta \). We know, both from specific construction (see for instance [7]) and from the Jewitt-Krieger theorem, that there are many minimal subshifts of positive entropy.

Before giving the next example it is convenient to introduce some terminology. Let \((X, d)\) be a compact metric space and let \(\sigma \) be a homeomorphism of \(X \). Say that a point \(x \in X \) has an arithmetic subset \(S = a + L \mathbb{Z} \subseteq \mathbb{Z} \) such that if \(n, m \in S \) then \(d(\sigma^n x, \sigma^m x) < \epsilon \). We say \((X, \sigma)\) clusters arithmetically, or is of class \(A \), if every point of \(X \) has an arithmetically clustered orbit. The property of arithmetically clustered is unchanged if \(d \) is replaced by some other topologically equivalent (hence uniformly equivalent, since \(X \) is compact) metric.

Proposition 4.

1. If \((X, \sigma)\) and \((Y, \tau)\) are in \(\mathcal{A} \) then \((X \times Y, \sigma \times \tau)\) is in \(\mathcal{A} \).
2. If \((X, \sigma)\) is in \(S \) and if \((Y, \tau)\) is a factor of \((X, \sigma)\) then \((Y, \tau)\) is in \(S \).
3. The 2-shift does not cluster arithmetically.

Proof.

1. Let \((x, y) \in X \times Y\) and let \(\epsilon > 0 \). We use the same symbol \(d \) to denote the metric on each space. It suffices to find an arithmetic set \(S \) such that \(n, m \in S \) implies \(d(\sigma^n x, \sigma^m x) < \epsilon \) and \(d(\tau^n y, \tau^m y) < \epsilon \). Let \(S_x = a + L \mathbb{Z} \) be the appropriate arithmetic set for \(x \) and \(\epsilon \). Choose \(\delta > 0 \) so that if \(y_1, y_2 \) in \(Y \) and \(d(y_1, y_2) < \delta \) then \(d(\tau^k y_1, \tau^k y_2) < \epsilon \) for \(0 \leq k \leq L - 1 \). Now choose \(S_Y = b + M \mathbb{Z} \) so that \(m, n \in S_Y \) implies \(d(\tau^m y, \tau^n y) < \delta \). Choose \(u \in \mathbb{Z} \) and \(0 \leq k \leq L - 1 \) so that \(a + uL = b + k \). Let \(S = a + uL + LM \mathbb{Z} \). Observe that \(S \subseteq S_x \) so \(n, m \in S \) implies \(d(\sigma^n x, \sigma^m x) < \epsilon \). Write \(S \) as \(b + k + LM \mathbb{Z} \). If \(n, m \in S \) then \(n - k, m - k \in S_Y \) so \(d(\tau^{n-k} y, \tau^{m-k} y) < \delta \) yielding \(d(\tau^n y, \tau^m y) < \epsilon \).

2. This is a direct consequence of uniform continuity.

3. The point \(0, 1, 1, 0, 0, 0, 1, 1, 1, \ldots \) does not have an arithmetically clustered orbit.

Remark.

Theorem 1 implies that no zero dimensional \(\mathcal{A} \) flow can have its enveloping semigroup equal to \(\beta \). The dimensional assumption is superfluous. Suppose \((X, \sigma)\) clusters arithmetically and suppose the function \(f \) is in the corresponding algebra \(A(X) \). It is easy to show that for every \(\epsilon > 0 \) there is an arithmetic set \(S \) such that if \(n, m \in S \) then \(|f(n) - f(m)| < \epsilon \). It follows that \(A \neq B \) and so \(E \neq \beta \).

The next example, a mild variant of one provided by B. Weiss at the 1995 CBMS conference in Bakersfield, is a non-minimal subshift (of the 2-shift) of positive entropy. It belongs to the class \(A \) and so \(E \neq \beta \).

Let \(m = m_1, m_2, \ldots \in \{0, 1, 2, 3, \ldots, 9\}^\mathbb{N} = M \). With each \(m \in M \) we associate \(I_m \subseteq \mathbb{Z} \) defined by \(i \in I_m \) if and only if there exist \(n \in \mathbb{N} \) and \(k \in \mathbb{Z} \) such that
$|i - k 10^n - \sum_{j=1}^n m_j 10^{i-j-1}| < n$. For example, if $m = 3, 2, 5 \ldots$ then, for any k, $3 + 10k \in I_m$, $\{22, 23, 24\} + 100k \subset I_m$, $\{52, 525\} + 1000k \subset I_m$. We let $x \in X \subset \{0, 1\}^\mathbb{Z}$ if there is some $m \in M$ such that $x_i = 0$ for each $i \in I_m$. We will say such an x and m are paired. In general neither x nor m determines the other. We let σ be the shift: $\sigma(x)_i = x_{i+1}$.

Proposition 5. X is a closed shift invariant set and the flow (X, σ) has positive topological entropy.

Proof. If $x \in X$ and $m \in M$ are paired in the above manner then $m - 1$ and $m + 1$ are paired with $\sigma(x)$ and $\sigma^{-1}(x)$ respectively, where $m + 1$ is obtained by changing the leading string of nines (if there is one) to zeroes and then increasing the first non-nine digit (if there is one) by 1, and $m - 1$ is defined analogously so that $(m + 1) - 1 = m$.

Now suppose $x^{(\nu)}$ is a sequence of points in X converging to a point x in $\{0, 1\}^\mathbb{Z}$. We will show $x \in X$. Let $m^{(\nu)} \in M$ be paired with $x^{(\nu)}$. Since M is compact, we can assume (passing to a subsequence if necessary) that $m^{(\nu)}$ converges to some $m \in M$. It is easily seen that x and m are paired. This shows X is closed.

Next let X_1 be the set of x paired with $1 = 1, 1, 1, \ldots$. If we look at the entries in the interval $[1, 10^k]$ we see that ones are specified at $I_1 \cap [1, 10^k]$ and any pattern of zeroes and ones may appear at the remaining entries. The set I consists of $\{1, 11, 21, \ldots\} \cup \{10, 12, 101, 112, \ldots\} \cup \{109, 113, 1109, 1113, \ldots\} \cup \ldots$. Thus

$$\lceil \text{card}(I \cap [1, 10^k]) \rceil < 10^k \left(\frac{1}{10} + \frac{2}{10^2} + \frac{2}{10^3} + \ldots\right)$$

$$= 10^k \left(\frac{1}{10} + \frac{2}{10^2} \frac{1}{1 - \frac{1}{10}}\right) = \frac{11}{90} \times 10^k.$$

A finite block x_1, \ldots, x_n in $\{0, 1\}^n$ is called an admissible n-block if there is some two-side continuation $\ldots, x_1, \ldots, x_n, \ldots$ to an element of X. We have just shown that for $n = 2^k$ the number of admissible n-blocks is at least $2^\pi n$. This, as is well-known, implies that σ has positive entropy.

It is obvious from the construction that (X, σ) belongs to \mathcal{A}.

Acknowledgments

As noted, this last example is due to B. Weiss. We thank H. Furstenberg for the reference [6], and for pointing out the relevance of their Theorem 1. Conversations with M. Boyle, J. Auslander and CSUB student Andrew Sean Watson were helpful.

References

Department of Mathematics, University of Maryland at College Park, College Park, Maryland 20742
E-mail address: krb@hroswitha.umd.edu

Department of Mathematics, California State University at Bakersfield, Bakersfield, California 93311
E-mail address: dgove@ultrix6.cs.csubak.edu

Department of Mathematics, California State University at Bakersfield, Bakersfield, California 93311
E-mail address: khaddad@ultrix6.cs.csubak.edu