Finite Euclidean graphs over rings
HTML articles powered by AMS MathViewer
- by A. Medrano, P. Myers, H. M. Stark and A. Terras
- Proc. Amer. Math. Soc. 126 (1998), 701-710
- DOI: https://doi.org/10.1090/S0002-9939-98-04294-4
- PDF | Request permission
Abstract:
We consider graphs attached to $(\mathbb {Z}/q\mathbb {Z})^n$, where $q=p^r$, for an odd prime $p$, using an analogue of the Euclidean distance. These graphs are shown to be mostly non-Ramanujan, in contrast to the case of Euclidean graphs over finite fields.References
- J. Angel, C. Trimble, B. Shook, and A. Terras, Graph spectra for finite upper half planes over rings, Linear Algebra Appl. 226/228 (1995), 423โ457. MR 1344579, DOI 10.1016/0024-3795(95)00173-O
- Wen-Ching Winnie Li, A survey of Ramanujan graphs, in R. Pellikaan, M. Perret and S.G. Vladut (Eds.), Arithmetic, Geometry and Coding Theory, Proc. Conf. at C.I.R.M., Luminy, June 28-July 2, 1993, de Gruyter, Berlin, 1996.
- Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, vol. 125, Birkhรคuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski. MR 1308046, DOI 10.1007/978-3-0346-0332-4
- A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no.ย 3, 261โ277. MR 963118, DOI 10.1007/BF02126799
- Archie Medrano, Perla Myers, Harold M. Stark, and Audrey Terras, Finite analogues of Euclidean space, J. Comput. Appl. Math. 68 (1996), 221โ238.
- Perla Myers, Ph.D. Thesis, U.C.S.D., 1995.
- R. Odoni, On Gauss sums $(\textrm {mod}\ p^{n})$, $n\geq 2$, Bull. London Math. Soc. 5 (1973), 325โ327. MR 327678, DOI 10.1112/blms/5.3.325
- Hans Saliรฉ, รber die Kloostermanschen Summen $S(u,v;q)$, Math Z., 34 (1931), 91-109.
- Peter Sarnak, Some applications of modular forms, Cambridge Tracts in Mathematics, vol. 99, Cambridge University Press, Cambridge, 1990. MR 1102679, DOI 10.1017/CBO9780511895593
- Harold M. Stark and Audrey Terras, Zeta functions of finite graphs and coverings, Advances in Math., 121 (1996), 124โ165.
- Audrey Terras, Survey of spectra of Laplacians on finite symmetric spaces, Experimental Math., 5 (1996), 15โ32.
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406, DOI 10.1007/978-1-4612-5128-6
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425โ428. MR 6, DOI 10.2307/2303037
- Kenneth S. Williams, Note on the Kloosterman sum, Proc. Amer. Math. Soc. 30 (1971), 61โ62. MR 285501, DOI 10.1090/S0002-9939-1971-0285501-3
- Kenneth S. Williams, The Kloosterman sum revisited, Canad. Math. Bull. 16 (1973), 363โ365. MR 327679, DOI 10.4153/CMB-1973-057-0
Bibliographic Information
- A. Medrano
- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
- P. Myers
- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- Email: pmyers@cats.ucsc.edu
- A. Terras
- Email: aterras@ucsd.edu
- Received by editor(s): September 11, 1996
- Communicated by: Dennis A. Hejhal
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 701-710
- MSC (1991): Primary 11T23; Secondary 05C25
- DOI: https://doi.org/10.1090/S0002-9939-98-04294-4
- MathSciNet review: 1443395