Rational curves on K3 surfaces in $\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^1$
HTML articles powered by AMS MathViewer
- by Arthur Baragar
- Proc. Amer. Math. Soc. 126 (1998), 637-644
- DOI: https://doi.org/10.1090/S0002-9939-98-04427-X
- PDF | Request permission
Abstract:
We discuss Manin and Batyrev’s notion of the arithmetic stratification of a variety, and, for an irreducible surface $V$ embedded in $\mathbb P^m$, compare it with the spectrum of degrees of rational curves on $V$. We study this spectrum for the class of K3 surfaces generated by smooth (2,2,2) forms in $\mathbb P^1\times \mathbb P^1 \times \mathbb P^1$.References
- A. Baragar, Rational points on $K3$ surfaces in $\textbf {P}^1\times \textbf {P}^1\times \textbf {P}^1$, Math. Ann. 305 (1996), no. 3, 541–558. MR 1397435, DOI 10.1007/BF01444236
- V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27–43 (French). MR 1032922, DOI 10.1007/BF01453564
- Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, DOI 10.1007/BF01393904
- Serge Lang, Number theory. III, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. Diophantine geometry. MR 1112552, DOI 10.1007/978-3-642-58227-1
- Joseph H. Silverman, Rational points on $K3$ surfaces: a new canonical height, Invent. Math. 105 (1991), no. 2, 347–373. MR 1115546, DOI 10.1007/BF01232270
- Yuri Tschinkel, Finite heights and rational points on surfaces, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 319–329. MR 1368430
- R. C. Vaughan and T. D. Wooley, On a certain nonary cubic form and related equations, Duke Math. J. 80 (1995), no. 3, 669–735. MR 1370112, DOI 10.1215/S0012-7094-95-08023-5
- Lan Wang, Rational points and canonical heights on $K3$-surfaces in $\textbf {P}^1\times \textbf {P}^1\times \textbf {P}^1$, Recent developments in the inverse Galois problem (Seattle, WA, 1993) Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 273–289. MR 1352278, DOI 10.1090/conm/186/02187
- —, The Automorphism Groups of K3 Surfaces with Picard Number 3, (to appear).
Bibliographic Information
- Arthur Baragar
- Affiliation: Department of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Address at time of publication: Department of Mathematical Sciences, University of Nevada, Las Vegas, Nevada 89154-4020
- Email: baragar@nevada.edu
- Received by editor(s): May 9, 1996
- Communicated by: Ron Donagi
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 637-644
- MSC (1991): Primary 14J28, 14J50, 14G05
- DOI: https://doi.org/10.1090/S0002-9939-98-04427-X
- MathSciNet review: 1459107