Finitistic dimension and Ziegler spectrum
HTML articles powered by AMS MathViewer
- by Henning Krause
- Proc. Amer. Math. Soc. 126 (1998), 983-987
- DOI: https://doi.org/10.1090/S0002-9939-98-04170-7
- PDF | Request permission
Abstract:
Given a two-sided artinian ring $\Lambda$, it is shown that the Ziegler spectrum of $\Lambda$ forms a test class for certain homological properties of $\Lambda$. We discuss the finitistic dimension of $\Lambda$, Nunke’s condition, and also the relation between the big and the little finitistic dimension.References
- Maurice Auslander and Idun Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152. MR 1097029, DOI 10.1016/0001-8708(91)90037-8
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- W. Crawley-Boevey, Seminar talk at Universität Bielefeld (1993).
- William Crawley-Boevey, Locally finitely presented additive categories, Comm. Algebra 22 (1994), no. 5, 1641–1674. MR 1264733, DOI 10.1080/00927879408824927
- Dieter Happel, On Gorenstein algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 389–404. MR 1112170, DOI 10.1007/978-3-0348-8658-1_{1}6
- I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, Proc. London Math. Soc. (3) 74 (1997), 503–558.
- B. Huisgen-Zimmermann, Private communication (1996).
- B. Huisgen-Zimmermann and S.O. Smalø, A homological bridge between finite and infinite dimensional representations of algebras, preprint (1996).
- J. P. Jans, Duality in Noetherian rings, Proc. Amer. Math. Soc. 12 (1961), 829–835. MR 137743, DOI 10.1090/S0002-9939-1961-0137743-9
- J. P. Jans, Some generalizations of finite projective dimension, Illinois J. Math. 5 (1961), 334–344. MR 183748
- H. Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra, 114 (1997), 259–271.
- H. Krause, Exactly definable categories, J. Algebra, to appear.
- S.O. Smalø, The supremum of the difference between the big and little finitistic dimensions is infinite, preprint (1996).
- Martin Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), no. 2, 149–213. MR 739577, DOI 10.1016/0168-0072(84)90014-9
- Birge Zimmermann-Huisgen, Homological domino effects and the first finitistic dimension conjecture, Invent. Math. 108 (1992), no. 2, 369–383. MR 1161097, DOI 10.1007/BF02100610
Bibliographic Information
- Henning Krause
- MR Author ID: 306121
- ORCID: 0000-0003-0373-9655
- Email: henning@mathematik.uni-bielefeld.de
- Received by editor(s): June 7, 1996
- Received by editor(s) in revised form: September 25, 1996
- Communicated by: Ken Goodearl
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 983-987
- MSC (1991): Primary 16E10, 16G10
- DOI: https://doi.org/10.1090/S0002-9939-98-04170-7
- MathSciNet review: 1425129