Ensembles sur lesquels les polynômes sont déterminés par leur image
HTML articles powered by AMS MathViewer
- by Michel Savoyant
- Proc. Amer. Math. Soc. 126 (1998), 1143-1148
- DOI: https://doi.org/10.1090/S0002-9939-98-04178-1
- PDF | Request permission
Abstract:
Let $A$ be a non-empty subset of the complex plane $\mathbb {C}$, and $P$, $Q$ two complex polynomials. If $P$ and $Q$ having the same image on $A$ implies $P=Q$, we say that $A$ is a generalized unicity set (for polynomials). We construct in this paper a subset $A$ of $\mathbb {C}$ such that $A$ and $\mathbb {C}\setminus A$ are generalized unicity sets, and we give an example of a generalized unicity set which is open, connected and unbounded. Résumé. Soit $A$ un sous-ensemble non vide du plan complexe $\mathbb {C}$, et $P$, $Q$ deux fonctions polynômes à coefficients complexes. Si l’égalité $P(A)=Q(A)$ entraîne $P=Q$, on dira que $A$ est un ensemble d’unicité généralisée (pour les polynômes). On construit dans cet article un sous-ensemble $A$ de $\mathbb {C}$ tel que $A$ et $\mathbb {C}\setminus A$ sont d’unicité généralisée, et on donne aussi l’exemple d’un ensemble d’unicité généralisée qui est ouvert, connexe et non borné.References
- Harold G. Diamond, Carl Pomerance, and Lee Rubel, Sets on which an entire function is determined by its range, Math. Z. 176 (1981), no. 3, 383–398. MR 610219, DOI 10.1007/BF01214615
- Elgin H. Johnston, On sets of range uniqueness, Math. Z. 184 (1983), no. 4, 533–547. MR 719492, DOI 10.1007/BF01161733
Bibliographic Information
- Michel Savoyant
- Email: savoyant@math.univ-montp2.fr
- Received by editor(s): January 29, 1996
- Received by editor(s) in revised form: October 1, 1996
- Communicated by: Albert Baernstein II
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1143-1148
- MSC (1991): Primary 30C10
- DOI: https://doi.org/10.1090/S0002-9939-98-04178-1
- MathSciNet review: 1425137