Maximal nests in the Calkin algebra
HTML articles powered by AMS MathViewer
- by Don Hadwin
- Proc. Amer. Math. Soc. 126 (1998), 1109-1113
- DOI: https://doi.org/10.1090/S0002-9939-98-04233-6
- PDF | Request permission
Abstract:
We prove that if two countable commutative lattices of projections in the Calkin algebra are order isomorphic, then they are unitarily equivalent. We show that there are isomorphic maximal nests of projections in the Calkin algebra that are order isomorphic but not similar. Assuming the continuum hypothesis, we show that all maximal nests of projections in the Calkin algebra are order isomorphic.References
- Niels Toft Andersen, Similarity of continuous nests, Bull. London Math. Soc. 15 (1983), no. 2, 131–132. MR 689244, DOI 10.1112/blms/15.2.131
- Constantin Apostol and Kenneth R. Davidson, Isomorphisms modulo the compact operators of nest algebras. II, Duke Math. J. 56 (1988), no. 1, 101–127. MR 932858, DOI 10.1215/S0012-7094-88-05605-0
- Constantin Apostol and Frank Gilfeather, Isomorphisms modulo the compact operators of nest algebras, Pacific J. Math. 122 (1986), no. 2, 263–286. MR 831113, DOI 10.2140/pjm.1986.122.263
- William Arveson, Perturbation theory for groups and lattices, J. Funct. Anal. 53 (1983), no. 1, 22–73. MR 715546, DOI 10.1016/0022-1236(83)90045-9
- L. Brown, R. G. Douglas, and P. A. Fillmore, BDF
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267, DOI 10.1007/978-3-642-65780-1
- H. G. Dales and W. H. Woodin, An introduction to independence for analysts, London Mathematical Society Lecture Note Series, vol. 115, Cambridge University Press, Cambridge, 1987. MR 942216, DOI 10.1017/CBO9780511662256
- Kenneth R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. 348 (1984), 72–87. MR 733923, DOI 10.1515/crll.1984.348.72
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- F. Hausdorff, Summen von $\aleph _1$ Mengen, Fund. Math. 26 (1936) 241-255.
- B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Analysis 11 (1972), 39–61. MR 0341119, DOI 10.1016/0022-1236(72)90078-x
- David R. Larson, A solution to a problem of J. R. Ringrose, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 243–246. MR 656203, DOI 10.1090/S0273-0979-1982-15022-4
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- J. von Neumann, Charakterisierung des Spektrums eines Integral Operators, Hermann, Paris, 1935.
Bibliographic Information
- Don Hadwin
- Affiliation: Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824
- Email: don@math.unh.edu
- Received by editor(s): September 23, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1109-1113
- MSC (1991): Primary 47D25, 04A30
- DOI: https://doi.org/10.1090/S0002-9939-98-04233-6
- MathSciNet review: 1443829