CHARACTERIZATIONS OF CONTRACTION C-SEMIGROUPS

MIAO LI AND FALUN HUANG

(Communicated by Palle E. T. Jorgensen)

Abstract. A C-semigroup $\{T(t)\}_{t \geq 0}$ is of contractions if $\|T(t)x\| \leq \|Cx\|$ for $t \geq 0$, $x \in X$. Using the Hille-Yosida space, we completely characterize the generators of contraction C-semigroups. We also give the Lumer-Phillips theorem for C-semigroups in several special cases.

1. Introduction

The notion of exponentially bounded C-semigroup was introduced by Davies and Pang [1]. Recently, the theory of C-semigroup has been extensively developed by many authors [2, 7, 9]. This theory allows us to study many ill-posed abstract Cauchy problems.

The starting point of this paper is to try to give an answer to the question asked by R. deLaubenfels in [3, Open question 6.10]: Does there exist an analogue of the Lumer-Phillips theorem for C-semigroups? Since the Lumer-Phillips theorem characterizes the generators of contraction C_0-semigroups, this gives us the motivation to make a suitable definition for the contractions of C-semigroups and then characterize the generators.

On the other hand, many works have generalized the Hille-Yosida theorem to C-semigroups. Earlier, Davies and Pang [1] gave a characterization of an exponentially bounded C-semigroup under the assumption that $R(C)$ is dense in X. Later, Tanaka and Miyadera [7] generalized their results to the case of $R(C)$ not dense, and they gave a sufficient and necessary condition for a closed linear operator with dense domain to be the generator of an exponentially bounded C-semigroup. After defining the contraction C-semigroup, we are also interested in characterizing the generator by the Hille-Yosida type theorem. Here the main difficulty we meet with is that the generator may not be densely defined, we choose the Hille-Yosida space to give an additional condition on the generator.

This paper is organized as follows. §2 is devoted to some preliminaries on C-semigroups. In §3 we characterize the generators of contraction C-semigroups in general cases, and under the assumption that $C(D(A))$ is dense in $R(C)$, the characterization can be simplified. §4 deals with several special cases of $\rho(A) \neq \emptyset$ or
$R(C) = X$, we obtain both the Hille-Yosida theorem and the Lumer-Phillips theorem in such cases. This means that we partly give the answer to the question mentioned above in the affirmative.

2. Preliminaries

Throughout this paper, X will be a Banach space. The space of all bounded linear operators on X will be denoted by $B(X)$, and C will always be an injective operator in $B(X)$. For an operator A, we will write $D(A)$ for its domain, $R(A)$ for its range and $\rho(A)$ for its resolvent set, and we will write E for the closure of a subspace of X, E.

First, we recall the definition of C-semigroups.

Definition 2.1. A strongly continuous family $\{T(t)\}_{t \geq 0} \subset B(X)$ is called a C-semigroup if $T(t+s)C = T(t)T(s)$ for $t, s \geq 0$ and $T(0) = C$. $\{T(t)\}_{t \geq 0}$ is exponentially bounded if there exist $M < \infty$ and $\omega \in R$ such that $\|T(t)\| \leq Me^{\omega t}$.

The generator of $\{T(t)\}_{t \geq 0}$, A, is defined by

$$Ax = C^{-1} \lim_{t \to 0} \frac{1}{t} (T(t)x - Cx)$$

with

$$D(A) = \{x \in X : \lim_{t \to 0} \frac{1}{t} (T(t)x - Cx) \text{ exists and is in } R(C)\}.$$

The complex number λ is in $\rho_C(A)$, the C-resolvent of A, if $(\lambda - A)$ is injective and $R(C) \subseteq R(\lambda - A)$.

Lemma 2.2 ([4, 7]). Suppose A generates a C-semigroup $\{T(t)\}_{t \geq 0}$ satisfying $\|T(t)\| \leq Me^{\omega t}$. Then

(a) A is a closed linear operator with $\overline{D(A)} \supseteq R(C)$;
(b) $\forall x \in X$, $T(t)x = Cx + A \int_0^t T(s)xdS$, which implies $T(\cdot)x$ is a mild solution for the abstract Cauchy problem

$$\frac{d}{dt} u(t) = Au(t), \quad u(0) = x;$$

(c) $\forall x \in D(A)$ and $t \geq 0$, $T(t)x \in D(A)$ with $AT(t)x = T(t)Ax$;
(d) $A = C^{-1}AC$, where $D(C^{-1}AC) = \{x \in X : Cx \in D(A) \text{ and } ACx \in R(C)\}$;
(e) $(\omega, \infty) \subseteq \rho_C(A)$. For every $r > \omega$ and $n \in \mathbb{N}$, $D((r - A)^{-n}) \supseteq R(C)$ and

$$\begin{align*}
(r - A)^{-n}C &= \frac{1}{(n - 1)!} \int_0^\infty t^{n-1}e^{-rt}T(t)dt \\
which \ implies \ \|((r - \omega)^n(r - A)^{-n}C\| &\leq M.
\end{align*}$$

Next we need to introduce the Hille-Yosida space for an operator, for the details we refer to [4].

Definition 2.3. Suppose A has no eigenvalues in $(0, \infty)$. The Hille-Yosida space for A, Z_0, is the Banach space defined by

$$Z_0 = \{x \in X : \text{ The Cauchy problem (1) has a bounded uniformly continuous mild solution } u(\cdot, x)\}$$
with
\[\|x\|_{Z_0} = \sup\{\|u(t, x)\|; t \geq 0\} \quad \text{for } x \in Z_0. \]

And the weak Hille-Yosida space for \(A, Y\), is the Banach space defined by
\[Y = \{x \in X: x \in R((s - A)^n) \forall s > 0, n \in \mathbb{N} \text{ with} \]
\[\|x\|_Y = \sup\{s^n\|(s - A)^{-n}x\|; s > 0, n + 1 \in \mathbb{N}\} < \infty. \]

The relation between \(Z_0\) and \(Y\) is as follows.

Lemma 2.4. Suppose \(A\) has no eigenvalues in \((0, \infty)\), and \(Z_0\) and \(Y\) are defined as above. Then
(a) \(Z_0 \subset Y\) and \(\|x\|_{Z_0} = \|x\|_Y\) for all \(x \in X\);
(b) \(Z_0\) is the closure, in \(Y\), of \(D(A|Y)\), where \(D(A|Y) = \{x \in Y \cap D(A): Ax \in Y\}\);
(c) \(A|Z_0\) generates a contraction \(C_0\)-semigroup on \(Z_0\).

3. Characterizations of contraction \(C\)-semigroups

A \(C\)-semigroup \(\{T(t)\}_{t \geq 0}\) is of contractions if \(\|T(t)x\| \leq \|Cx\|\) for \(t \geq 0\) and \(x \in X\). In this section, we give the characterizations of the generators of contraction \(C\)-semigroups. We start with the following

Proposition 3.1. Suppose \(A\) generates a contraction \(C\)-semigroup, then
(a) \((0, \infty) \subseteq \rho_C(A)\), and for \(\lambda > 0, n \in \mathbb{N}\) and \(x \in X\), \(R(C) \subseteq R((\lambda - A)^n)\) with
\[\lambda^n\|\lambda - A\|^nCx\| \leq \|Cx\|; \]
(b) for every \(x \in D(A)\), there exists an \(x^* \in F(Cx)\), that is, \(x^* \in X^*, \|x^*\| = \|Cx\|\) and \(x^*(Cx) = \|Cx\|^2\), such that
\[\text{Re}(CAx, x^*) \leq 0, \]
where \(\langle x, x^* \rangle\) denotes the value of \(x^*\) at \(x\).

Proof. (a) follows directly from Lemma 2.2(e).

Let \(x \in D(A)\) and \(x^* \in F(Cx)\). Then
\[\text{Re} \left(\frac{T(t)x - Cx}{t}, x^* \right) \leq \text{Re} \left(\frac{T(t)x}{t}, x^* \right) - \frac{\|Cx\|^2}{t} \leq 0 \quad \text{for } t > 0, \]
hence
\[\text{Re}(CAx, x^*) = \lim_{t \to 0} \text{Re} \left(\frac{T(t)x - Cx}{t}, x^* \right) \leq 0. \]
This is (b).

Remark 3.2. If an operator \(A\) with \(CA \subseteq AC\) satisfies (b), we call \(A\) \(C\)-dissipative. Similar to the proof of [5, Chapter 1, Theorem 4.2], we can prove that \(A\) is \(C\)-dissipative if and only if \(\|\lambda - A\|^n \geq \lambda \|Cx\|\) \(\forall x \in D(A)\) and \(\lambda > 0\). Note that if \(\lambda\|\lambda - A\|^{-1}Cx\| \leq C\|Cx\|\) for all \(x \in X\), then for \(x \in D(A)\),
\[\|\lambda - A\|^n = \|C(\lambda - A)x\| \geq \lambda(\lambda - A)^{-1}C(\lambda - A)x = \lambda\|Cx\|. \]

Using the Hille-Yosida space, we can completely characterize the generators.

Theorem 3.3. Let \(A\) be an operator on \(X\). Then \(A\) generates a contraction \(C\)-semigroup if and only if \(A\) satisfies
(a) \(A = C^{-1}AC \);
(b) \((0, \infty) \subseteq D(A), R(C) \subseteq R((\lambda - A)^n) \) and \(\lambda^n\|((\lambda - A)^{-n}Cx) \leq \|Cx\| \) for \(\lambda > 0, n \in \mathbb{N} \) and \(x \in X \);
(c) for some \(\lambda \geq 0 \), the Hille-Yosida space for \(A - \lambda I \), denoted by \(Z_\lambda \), contains \(R(C) \).

Proof. For the necessity, Lemma 2.2(d) and Proposition 3.1 imply (a) and (b). It remains to show (c). Let \(\lambda > 0 \) and define \(S(t) = e^{-\lambda t}T(t) \) for \(t \geq 0 \). Thus \(\{S(t)\}_{t \geq 0} \) is a bounded uniformly strongly continuous \(C \)-semigroup, generated by \(A - \lambda I \). By Lemma 2.2(b) and Definition 2.3, \(R(C) \) is contained in the Hille-Yosida space for \(A - \lambda I \), i.e., \(Z_\lambda \).

Conversely, let \(A_\lambda = A|_{Z_\lambda} \). By Lemma 2.4, \(A_\lambda - \lambda I \) generates a \(C_0 \)-semigroup of contractions, \(e^{\{A_\lambda - \lambda I\}} \), on \((Z_\lambda, \| \cdot \|_{Z_\lambda}) \), which implies \(e^{A_\lambda} \) is also a \(C_0 \)-semigroup on \((Z_\lambda, \| \cdot \|_{Z_\lambda}) \).

For \(t \geq 0 \), define \(W(t) : X \to X \) by \(W(t) = e^{tA_\lambda}C \); we show that \(\{W(t)\}_{t \geq 0} \) is a \(C \)-semigroup generated by \(A \).

In fact, by (a), \(CA \subseteq AC \), so that \(C \) commutes with \(e^{tA_\lambda} \) for \(t \geq 0 \). Thus
\[
W(t+s)Cx = e^{(t+s)A_\lambda C^2x}e^{tA_\lambda}C\lambda x = W(t)W(s)x,
\]
that is, \(W(t+s)C = W(t)W(s) \).

Moreover, if \(x \in D(A) \), then \(CX \in Z_\lambda \cap D(A) \) with \(ACx = CAx \in Z_\lambda \), so that \(CX \in D(A_\lambda) \), which implies that \(e^{tA_\lambda}Cx \) is differentiable and
\[
Ae^{tA_\lambda}CX = A_\lambda e^{tA_\lambda}CX = e^{tA_\lambda}A_\lambda CX = e^{tA_\lambda}CAx,
\]
hence \(W(t)x \in D(A) \) with \(AW(t)x = W(t)Ax \). So \(W(t) \) is generated by an extension of \(A \). To show \(A \) is the generator, we only need to prove that \(A \) is closed. It is exactly as in the proof of [9, Lemma 2.2].

Finally, by (b) and the exponential formulas for \(C \)-semigroups, we have
\[
\|W(t)x\| = \lim_{n \to \infty} \left\| \left(1 - \frac{t}{n} A \right)^{-n} Cx \right\| \leq \|Cx\|,
\]
so that \(\{W(t)\} \) is of contractions.

Condition (c) in Theorem 3.3 seems to be difficult to check, but in the case of \(C(D(A)) \) dense in \(R(C) \), it can be omitted.

Theorem 3.4. Suppose \(C(D(A)) \) is dense in \(R(C) \). Then \(A \) generates a contraction \(C \)-semigroup if and only if \(A \) satisfies (a) and (b) in Theorem 3.3.

Proof. We only need to show the sufficiency.

If \(x \in D(A) \), then \(CX \in D(A) \) with \(ACx = CAx \) by (a). By (b), \(R(C) \subseteq Y \), the weak Hille-Yosida space for \(A \), since \(Z_0 \) is the closure of \(D(A)|_Y \) in \(Y \) by Lemma 2.4, we have \(CX \in Z_0 \).

For all \(x \in X \), there exists a sequence \(\{x_n\} \subset D(A) \), such that \(Cx_n \to CX \), in \(X \). Moreover, for \(n, m \in \mathbb{N} \), by Lemma 2.4,
\[
\|Cx_n - CX_m\|_{Z_0} = \|Cx_n - CX_m\|_Y \leq \|Cx_n - CX_m\|,
\]
so that \(\{CX_n\} \) is a Cauchy sequence in \(Z_0 \), which implies \(R(C) \subseteq Z_0 \). So Theorem 3.4 follows from Theorem 3.3.
\[\square\]
From the proof above we know that in this case we can choose $\lambda = 0$ in Theorem 3.3(c).

Note that if $D(A)$ is dense in X, then $C(D(A))$ is dense in $R(C)$. However, [2, Example 6.2] gave an example of a C-semigroup whose generator A is not densely defined while $C(D(A))$ is dense in $R(C)$.

4. Special cases

In this section, we make some applications of the results from the preceding section. First we give a sufficient condition that $C(D(A))$ is dense in $R(C)$.

Lemma 4.1. Suppose that A generates an exponentially bounded C-semigroup and there exists a sequence $\{\lambda_n\} \subset \rho(A)$, such that $\lambda_n \to +\infty$, then $C(D(A))$ is dense in $R(C)$.

Proof. Let $\lambda \in \rho(A)$, then for $\forall x \in X$, $(\lambda - A)^{-1}Cx = C(\lambda - A)^{-1}x \in C(D(A))$. An estimation using Eq. (2) yields that $\lambda(\lambda - A)^{-1}Cx \to Cx$ as $\lambda \to +\infty$. So that $\lambda_n(\lambda_n - A)^{-1}Cx \to Cx(n \to \infty)$, and since $\lambda_n(\lambda_n - A)^{-1}Cx \in C(D(A))$, our result holds.

The next lemma will be needed in the sequel.

Lemma 4.2. Let A be a closed linear operator with $CA \subseteq AC$. Suppose $0 \neq \lambda \in \rho_C(A)$ and $\|\lambda(\lambda - A)^{-1}Cx\| \leq \|Cx\|$, $\forall x \in X$. Then $R(\lambda - A) \supseteq R(C)$, and $\|\lambda(\lambda - A)^{-1}x\| \leq \|x\|$ for all $x \in R(C)$.

Proof. Let $x \in R(C)$. There exists a sequence $\{x_n\} \subset X$ such that $Cx_n \to x$ as $n \to \infty$. Define $x'_n = (\lambda - A)^{-1}Cx_n$, thus

$$\|x'_n - x'_m\| = \|\lambda(\lambda - A)^{-1}C(x_n - x_m)\| \leq \frac{1}{\lambda}\|C(x_n - x_m)\|$$

for $n, m \in \mathbb{N}$, so $\{x'_n\}$ is a Cauchy sequence. Suppose $x'_n \to x_0 \in X$ as $n \to \infty$. Since $(\lambda - A)x'_n = Cx_n$ and A is closed, it follows that $x_0 \in D(A)$ and $(\lambda - A)x_0 = x$. Moreover,

$$\|\lambda(\lambda - A)^{-1}x\| = \|x_0\| = \lim_{n \to \infty} \|x'_n\| = \lim_{n \to \infty} \lambda(\lambda - A)^{-1}C\|x_n\|$$

$$\leq \lim_{n \to \infty} \|Cx_n\| = \|x\|,$$

as desired.

Now we can apply Theorem 3.4 to the case of $\rho(A) \neq \emptyset$. It is remarked that since $\rho(A) \neq \emptyset$, $CA \subseteq AC$ implies $A = C^{-1}AC$.

Theorem 4.3. Let A be an operator on X. Suppose that $(0, \infty) \subseteq \rho(A)$. Then A generates a contraction C-semigroup if and only if A satisfies

(a) $CA \subseteq AC$;

(b) $\lambda\|\lambda(\lambda - A)^{-1}Cx\| \leq \|Cx\|$ for $\lambda > 0$ and $x \in X$;

(c) $C(D(A))$ is dense in $R(C)$.

Proof. Theorem 3.3 and Lemma 4.2 imply the necessity.

Conversely, we define an operator B on X by

$$D(B) = \{Cx : x \in D(A)\}, \quad Bx = Ax \quad \text{for} \ x \in D(B).$$

So that $D(B) = C(D(A))$ and $R(B) \subseteq R(C)$. For $\lambda > 0$, since $(\lambda - A)^{-1}Cx = C(\lambda - A)^{-1}x$, so $R(\lambda - B) \supseteq R(C)$ and $\lambda\|\lambda(\lambda - B)^{-1}Cx\| = \lambda\|\lambda(\lambda - A)^{-1}Cx\| \leq$
\[Cx \mid \text{From Remark 3.2, we know that } B \text{ is dissipative on } (R(C), \| \cdot \|). \text{ Since } D(B) = C(D(A)) = R(C), \text{ by [5, Chapter 1, Theorem 4.3], } B \text{ is closable in } R(C) \text{ (hence in } X), \text{ and the closure of } B \text{ in } (R(C), \|\|) \text{ (or } X), \text{ is dissipative on } (R(C), \|\|). \text{ By Lemma 4.2, } R(\lambda - B) = R(C) \text{ for } \lambda > 0. \text{ Therefore, the Lumer-Phillips theorem for } C_0\text{-semigroups implies that } \hat{B} \text{ generates a contraction } C_0\text{-semigroup, } \{S(t)\}_{t \geq 0}, \text{ on } (R(C), \|\|). \text{ Define } T(t) : X \to X \text{ by } T(t) = S(t)C. \text{ Thus } \{T(t)\}_{t \geq 0} \text{ is a } C\text{-semigroup of contractions on } X. \text{ For } x \in D(A),
\]
\[
\frac{T(t)x - Cx}{t} = \frac{S(t)Cx - Cx}{t} \to BCx = CAx,
\]
so that an extension of } A \text{ is the generator, and since } \rho(A) \neq \emptyset, \text{ it is exactly } A. \]

Remark 4.4. (a) The conditions (a)–(c) in Theorem 4.3 are equivalent to (a), (c) and (b)' A is } C\text{-dissipative. } \text{In fact, by Remark 3.2, (b)' implies that } \|\lambda(\lambda - A)Cx\| \geq \lambda\|Cx\| (\lambda > 0, x \in D(A)). \text{ Since } (0, \infty) \subseteq \rho(A), \text{ for } \lambda > 0,
\[
\|Cx\| = \|(\lambda - A)C(\lambda - A)^{-1}x\| \geq \lambda\|C(\lambda - A)^{-1}x\| = \lambda\|\lambda - A\|^{-1}C\|,\]
which is (b).

(b) In [2, Theorem 3.3], it is claimed that if } \rho(A) \neq \emptyset \text{ and } A \text{ generates a } C\text{-semigroup of } O(e^{\omega t}), \text{ then } (\omega, \infty) \subseteq \rho(A). \text{ However, there appears to be a gap in the argument, because it fails to prove that, if } C^{-1} \text{ and } (r - A) \text{ both have resolvents that commute, then } C^{-1}(r - A) = (r - A)C^{-1}. \text{ Here is a counterexample, suggested by deLaubenfels himself. Take } X = BC([0, \infty)), \text{ the space of all bounded continuous functions on } [0, \infty) \text{ with supremum norm. Define } (Af)(s) = -sf(s) \text{ with } D(A) = \{f \in X, Af \in X\} \text{ and } (Cf)(s) = \frac{2}{1+s}f(s) \text{ for } s \geq 0. \text{ Then } \sigma(A)(\text{the spectrum of } A)(\lambda) = (\infty, 0], \text{ and } C^{-1}(\lambda - A) = (\lambda - A)C^{-1} \text{ for all } \lambda \in \rho(A). \text{ It is obvious that the function } f(s) = \frac{2}{1+s} \text{ is in } D(C^{-1}A) \text{ but is not in } D(AC^{-1}). \text{ Thus } C^{-1}A \neq AC^{-1}. \text{ We do not know whether the claimed result remains true.}

Let us consider the case when } \rho(A) \neq \emptyset. \text{ Let } C = (r - A)^{-n}, \text{ where } r \in \rho(A) \text{ and } n \in \mathbb{N} \cup \{0\}. \text{ From [9, Lemma 6.1], we know } \rho(C)(A) = \rho(A). \text{ Since } R(C) = D(A^n) \text{ and } C(D(A)) = D(A^{n+1}), \text{ as a direct consequence of Theorem 4.3, we have}

Corollary 4.5. Suppose } r \in \rho(A) \neq \emptyset, \text{ let } C = (r - A)^{-n}, \text{ } n \in \mathbb{N} \cup \{0\}. \text{ Then the following statements are equivalent.}

(a) } A \text{ generates a contraction } C\text{-semigroup;
(b) } A \text{ satisfies
(i) } (0, \infty) \subseteq \rho_C(A),
(ii) \forall x \in D(A^n) \text{ and } \lambda > 0, \|\lambda(\lambda - A)^{-1}x\| \leq \|x\|,
(iii) } D(A^{n+1}) \text{ is dense in } D(A^n);
(c) } A \text{ satisfies (i), (iii) and
(ii)' } A \text{ is } C\text{-dissipative.

In the case of } R(C) = X, \text{ the generator of a contraction } C\text{-semigroup is in fact the generator of a contraction } C_0\text{-semigroup.}

Theorem 4.6. Suppose } R(C) = X. \text{ Then the following assertions are equivalent:
(a) } A \text{ generates a contraction } C\text{-semigroup } \{T(t)\}_{t \geq 0};
(b) } A \text{ generates a contraction } C_0\text{-semigroup } \{S(t)\}_{t \geq 0} \text{ and } CA \subseteq AC;
(c) } A \text{ satisfies
(i) } A \text{ is closed and } CA \subseteq AC,
(ii) $(0, \infty) \subseteq \rho_C(A)$ and $\lambda \| (\lambda - A)^{-1} C x \| \leq \| C x \|$ for $\lambda > 0, x \in X$,
(iii) $D(A)$ is dense;
(d) A satisfies (i), (iii) and
(ii') $(0, \infty) \subseteq \rho_C(A)$ and A is C-dissipative.

Proof. (a)\Rightarrow(c) and (c)\Rightarrow(d) are obvious.
(c)\Rightarrow(b). By Lemma 4.2, (ii) implies $R(\lambda - A) = X$ and $\lambda \| (\lambda - A)^{-1} x \| \leq \| x \|$ for $\lambda > 0$ and $x \in X$, applying the Hille-Yosida theorem for C_0-semigroups to A gives (b).
(b)\Rightarrow(a). By defining $T(t) = S(t)C$, it is not hard to show that $\{T(t)\}_{t \geq 0}$ is a contraction C-semigroup generated by A.
(d)\Rightarrow(c). Since A is C-dissipative, $\forall x \in D(A)$, we have $\| (\lambda - A) C x \| \geq \lambda \| C x \|$, so that for $x \in R(\lambda - A)$,
$$\| C x \| = \| (\lambda - A) C (\lambda - A)^{-1} x \| \geq \lambda \| C (\lambda - A)^{-1} x \| = \lambda \| (\lambda - A)^{-1} C x \|.$$
Since $R(\lambda - A) \supseteq R(C)$, which is dense in X, a similar proof as that of Lemma 4.2 will do. \hfill \Box

Consider when B generates a contraction C_0-semigroup $\{S(t)\}_{t \geq 0}$ on $R(C)$ and $CB \subseteq BC$. Define $T(t) = S(t)C$ $(t \geq 0)$, we get a contraction C-semigroup $\{T(t)\}_{t \geq 0}$ on X. Suppose A is the generator. It is not hard to verify that $B = A|_{R(C)}$. For the converse, in the case of Theorem 4.3, we know it is true.

Open Question. Suppose A is the generator of a contraction C-semigroup on a Banach space X. Does there exist a restriction of A, A', which is a generator of a contraction C_0-semigroup on $R(C)$?

REFERENCES

5. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. MR 85g:47061

DEPARTMENT OF MATHEMATICS, SICHUAN UNION UNIVERSITY, CHENGDU 610064, PEOPLE’S REPUBLIC OF CHINA