The stability radius of a quasi-Fredholm operator
HTML articles powered by AMS MathViewer
- by Pak Wai Poon
- Proc. Amer. Math. Soc. 126 (1998), 1071-1080
- DOI: https://doi.org/10.1090/S0002-9939-98-04253-1
- PDF | Request permission
Abstract:
We extend the technique used by Kordula and Müller to show that the stability radius of a quasi-Fredholm operator $T$ is the limit of $\gamma (T^n)^{1/n}$ as $n\rightarrow \infty$. If $0$ is an isolated point of the Apostol spectrum $\sigma _\gamma (T)$, then the above limit is non-zero if and only if $T$ is quasi-Fredholm.References
- Constantin Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), no. 3, 279–294. MR 803833, DOI 10.1307/mmj/1029003239
- H. Bart and D. C. Lay, The stability radius of a bundle of closed linear operators, Studia Math. 66 (1979/80), no. 3, 307–320. MR 579736, DOI 10.4064/sm-66-3-307-320
- K.-H. Förster and M. A. Kaashoek, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49 (1975), 123–131. MR 372660, DOI 10.1090/S0002-9939-1975-0372660-0
- Sandy Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), no. 2, 317–337. MR 651274, DOI 10.2969/jmsj/03420317
- V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3055–3061. MR 1322931, DOI 10.1090/S0002-9939-96-03306-0
- Jean-Philippe Labrousse, Les opérateurs quasi Fredholm: une généralisation des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 2, 161–258 (French, with English summary). MR 636072, DOI 10.1007/BF02849344
- J.-Ph. Labrousse and M. Mbekhta, Résolvant généralisé et séparation des points singuliers quasi-Fredholm, Trans. Amer. Math. Soc. 333 (1992), no. 1, 299–313 (French). MR 1057780, DOI 10.1090/S0002-9947-1992-1057780-4
- Endre Makai Jr. and Jaroslav Zemánek, The surjectivity radius, packing numbers and boundedness below of linear operators, Integral Equations Operator Theory 6 (1983), no. 3, 372–384. MR 701026, DOI 10.1007/BF01691904
- M. Mbekhta and V. Müller, On the axiomatic theory of spectrum. II, Studia Math. 119 (1996), no. 2, 129–147. MR 1391472, DOI 10.4064/sm-119-2-129-147
- M. Mbekhta and A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 833–836.
- V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363–380.
- P. W. Poon, The Apostol representation of a linear operator, Preprint, Department of Mathematics, University of Melbourne.
- Christoph Schmoeger, The stability radius of an operator of Saphar type, Studia Math. 113 (1995), no. 2, 169–175. MR 1318422, DOI 10.4064/sm-113-2-169-175
- Jaroslav Zemánek, The stability radius of a semi-Fredholm operator, Integral Equations Operator Theory 8 (1985), no. 1, 137–144. MR 775217, DOI 10.1007/BF01199985
Bibliographic Information
- Pak Wai Poon
- Affiliation: Department of Mathematics, University of Melbourne, Victoria, 3052, Australia
- Email: pakpoon@maths.mu.oz.au
- Received by editor(s): June 21, 1996
- Received by editor(s) in revised form: September 23, 1996
- Additional Notes: The results in this paper form a part of the author’s research for the degree of Ph. D. at the University of Melbourne, 1996, under the supervision of J. J. Koliha.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1071-1080
- MSC (1991): Primary 47A55, 47A10, 47A53
- DOI: https://doi.org/10.1090/S0002-9939-98-04253-1
- MathSciNet review: 1443849