The Chern character for classical matrix groups
HTML articles powered by AMS MathViewer
- by Jay A. Wood
- Proc. Amer. Math. Soc. 126 (1998), 1237-1244
- DOI: https://doi.org/10.1090/S0002-9939-98-04316-0
- PDF | Request permission
Abstract:
We give explicit formulas for representations of classical matrix groups whose Chern characters have lowest order terms equal to standard characteristic classes. For $\operatorname {SO}(2r)$, the Euler class $e$ does not arise in this way, but $2^{r-1} e$ does arise in this way.References
- J. F. Adams, On Chern characters and the structure of the unitary group, Proc. Cambridge Philos. Soc. 57 (1961), 189–199. MR 121795, DOI 10.1017/s0305004100035052
- Michael F. Atiyah and Friedrich Hirzebruch, Quelques théorèmes de non-plongement pour les variétés différentiables, Bull. Soc. Math. France 87 (1959), 383–396 (French). MR 114231, DOI 10.24033/bsmf.1533
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 102800, DOI 10.2307/2372795
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- Dale Husemoller, Fibre bundles, 2nd ed., Graduate Texts in Mathematics, No. 20, Springer-Verlag, New York-Heidelberg, 1975. MR 0370578
- C. R. F. Maunder, Chern characters and higher-order cohomology operations, Proc. Cambridge Philos. Soc. 60 (1964), 751–764. MR 178465, DOI 10.1017/s0305004100038226
Bibliographic Information
- Jay A. Wood
- Affiliation: Department of Mathematics, Computer Science & Statistics, Purdue University Calumet, Hammond, Indiana 46323-2094
- MR Author ID: 204174
- Email: wood@calumet.purdue.edu
- Received by editor(s): October 1, 1996
- Additional Notes: The author was partially supported by NSA grants MDA904-94-H-2025 and MDA904-96-1-0067, and by Purdue University Calumet Scholarly Research Awards.
- Communicated by: Thomas Goodwillie
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1237-1244
- MSC (1991): Primary 55R40
- DOI: https://doi.org/10.1090/S0002-9939-98-04316-0
- MathSciNet review: 1443417
Dedicated: To S. S. Chern