DERIVATIONS IMPLEMENTED BY LOCAL MULTIPLIERS

MARTIN MATHIEU

(Communicated by Palle E. T. Jorgensen)

Abstract. A condition on a derivation of an arbitrary C^*-algebra is presented entailing that it is implemented as an inner derivation by a local multiplier.

It is an outstanding open question whether every derivation of a C^*-algebra A can be implemented as an inner derivation by a local multiplier, that is, an element in the direct limit of the multiplier algebras of the closed essential ideals of A. An affirmative answer was given by Elliott [4] for AF-algebras, and by Pedersen [11] for general separable C^*-algebras. In fact, it suffices to assume that every closed essential ideal of A is σ-unital; hence Pedersen's result entails Sakai's theorem that every derivation of a simple unital C^*-algebra is inner. But only an affirmative answer in the non-separable case would cover, extend and unify the results that every derivation of a simple C^*-algebra is inner in the multiplier algebra [13] and that all derivations of von Neumann algebras [6], [12] and AW^*-algebras [10] are inner. This quest becomes even more attractive by the recent results in [9] and [14] implying that, if a derivation δ on A is inner in the multiplier algebra, then there is a local multiplier a of A implementing δ such that $\|\delta\| = 2\|a\|$.

No progress on the above question seems to have been made since it was raised in [11] (see also [4]). The purpose of this note is to present a criterion on a given derivation δ of a (possibly non-separable) C^*-algebra A implying that δ is inner in the local multiplier algebra $M_{loc}(A)$. Though this criterion, inspired by Herstein’s work [5], is rather algebraic in nature, it is hoped that some approximate version may eventually yield a positive solution of the general problem.

1. Notation and preliminaries

Throughout this paper, $M(A)$ will denote the multiplier algebra of the C^*-algebra A. A left ideal L of A is said to be essential if its left annihilator $L^\perp = \{a \in A \mid aL = 0\}$ is zero. For a (closed) two-sided ideal I, the left annihilator coincides with the right annihilator, and $I + I^\perp$ is a (closed) essential ideal. Given two closed essential ideals I, J in A such that $J \subseteq I$, J is an essential ideal in $M(I)$ and hence $M(I)$ embeds isometrically into $M(J)$. Forming the C^*-direct limit of the directed family of multiplier algebras so obtained yields the local multiplier algebra of A.

Received by the editors September 23, 1996.

1991 Mathematics Subject Classification. Primary 46L57; Secondary 47B47, 16N60.

Key words and phrases. C^*-algebras, derivations, local multipliers.

This work was done while the author was a Visiting Fellow at The Fields Institute for Research in Mathematical Sciences, Waterloo, Ontario, Canada, supported by the Deutsche Forschungsgemeinschaft (DFG), to both of which he is very grateful.

©1998 American Mathematical Society
denoted by $M_{\text{loc}}(A)$. If we merely take the algebraic direct limit, we obtain a dense *-subalgebra of $M_{\text{loc}}(A)$ which is called the bounded symmetric algebra of quotients, $Q_b(A)$ of A. The reason for this terminology is that $Q_b(A)$ is the bounded part of the purely algebraic version, the symmetric ring of quotients $Q_s(A)$ of A in the sense of Kharchenko, where A is considered as a semiprime ring only. For more details on $Q_s(A)$ we refer to [7]. Another important interrelation between $Q_s(A)$ and $Q_b(A)$ is noted in [1]: every element $q \in Q_s(A)$ can be written as $e^{-1}q_0$, where $q_0 \in Q_b(A)$, e belongs to C_b, the center of $Q_b(A)$, and is not a divisor of zero. The commutative *-algebra C_b is dense in the center of $M_{\text{loc}}(A)$ [2] and is the bounded part of the center C of $Q_s(A)$; thus it is called the bounded extended centroid of A. Whenever J is an ideal of A, there is a unique projection $c(J)$ in C_b such that the annihilator of JC in AC is $(1 - c(J))AC$; we call $c(J)$ the central support of J. If $x \in A$ then $c_x := c(AxA)$ is the central support of x (which is in fact the central support projection of x within the AW*-algebra $Z(M_{\text{loc}}(A))$). Whenever $a, b \in M(A)$, we shall denote by $M_{a,b}$ the two-sided multiplication $x \mapsto axb$ on A, and by δ_a the inner derivation $x \mapsto xa - ax$.

It has emerged that, in working with local multipliers, it is often rather expedient and sometimes inevitable to also appeal to the surrounding algebraic framework, that is, to work within $Q_s(A)$ instead of $Q_b(A)$ only. The reason is the following. There is no way of making a non-invertible element of a C^*-algebra A invertible by enlarging A to a bigger C^*-algebra, but in $Q_s(A)$ such an element may become invertible, and hence many more equations can be solved within the non-C^*-algebra $Q_s(A)$. At the end, an additional argument is then needed to finally find the solution (to the original problem) within the C^*-algebraic frame, that is, $M_{\text{loc}}(A)$. Thus, working with local multipliers typically divides into two steps, a first purely algebraic one and a second, entirely independent analytic argument. This route is very well illustrated in [3], and we shall follow it subsequently again.

2. The results

The analytic step in our arguments is provided by the following observation.

Lemma. Let L be an essential left ideal in a C^*-algebra A. Let $f : J \to A$ be a linear mapping defined on a subspace J of A. If, for some derivation $\delta : A \to A$, the identity

$$f(x)u = -x\delta(u) \quad (x \in J, \ u \in L)$$

holds, then f is bounded with norm at most $\|\delta\|$.

Proof. Let π be an irreducible representation of A. By hypothesis,

$$\pi(f(x)y)\pi(z)\pi(u) = -\pi(x)\delta_\pi(\pi(yzu))$$

for all $x \in J$, $y, z \in A$ and $u \in L$, where δ_π denotes the induced derivation on $\pi(A)$.

Hence,

$$||M_{\pi(f(x)y),\pi(u)}\pi(z)|| \leq ||\pi(x)|| ||\delta_\pi|| ||\pi(y)|| ||\pi(z)|| ||\pi(u)||$$

$$\leq ||x|| ||\delta|| ||y|| ||\pi(z)|| ||\pi(u)||,$$

wherefore

$$||M_{\pi(f(x)y),\pi(u)}|| \leq ||x|| ||\delta|| ||y|| ||\pi(u)||.$$
for all \(x \in J, \ y \in A \) and \(u \in L \). Let \(I \) be the closed ideal \(\overline{IL} \). If \(\ker \pi \) does not contain \(I \), there is \(u \in L \) such that \(\pi(u) \neq 0 \). By [8, Proposition 2.3],
\[
\|M_{\pi(f(x)y), \pi(u)}\| = \|\pi(f(x)y)\|\|\pi(u)\|,\n\]
whence the above inequality entails that
\[
\|\pi(f(x)y)\| \leq \|x\| \|\delta\| \|y\|.
\]
Since each irreducible representation of \(I \) extends to an irreducible representation of \(A \) not vanishing on \(I \), it follows that \(\|f(x)y\| \leq \|x\| \|\delta\| \|y\| \) for all \(x \in J \) and \(y \in I \). Since \(I \) is essential (as \(L \) is essential), we conclude that
\[
\|f(x)\| = \sup \{\|f(x)y\| \mid y \in I, \ \|y\| \leq 1\} \leq \|\delta\| \|x\|
\]
for all \(x \in J \), as required.

We shall apply this lemma below to show that a certain derivation that is inner when extended to \(Q_s(A) \), is in fact inner in \(M_{loc}(A) \). The most general result on innerness of derivations in the local multiplier algebra so far has been Pedersen’s result [11, Proposition 2]. (We use this occasion to note that one of the assertions in [11, Lemma 1], viz. the absolute summability of \((y_n)_{n \in \mathbb{N}} \), is not proved and in fact cannot be proven, as simple counterexamples show. Fortunately, this does not interfere with the subsequent applications of [11, Lemma 1].) Pedersen’s condition is on the algebra \(A \) has to be separable), whereas our condition is on the derivation itself. Possibly a synthesis of weakened versions of both may result in the solution of the general question.

Theorem A. Let \(\delta \) be a derivation of a \(C^* \)-algebra \(A \). Suppose there exist an essential left ideal \(L \) of \(A \) and an element \(a \in A \) satisfying \(a\delta L = 0 \) and \((1-e_a)\delta L = 0 \). Then there is \(h \in Q_b(A) \) such that
\[
\delta = \delta_h, \ ah = 0, \ Lh = 0, \ \text{and} \ \|h\| \leq \|\delta\|.
\]

Proof. For all \(u \in L \) and \(y \in A \) we have
\[
a y \delta u + a(\delta y) u = a \delta(y u) = 0
\]
by assumption, whence
\[
(1) \quad M_{a, \delta u} + M_{a, u} \circ \delta = 0 \quad (u \in L).
\]

On the ideal \(J = AaA \) we define \(f: J \to A \) by \(\sum_i x_i a y_i \mapsto \sum_i x_i a \delta y_i \) whenever \(x_i, y_i \) are finitely many elements in \(A \). Note that, by (1),
\[
\sum_i x_i a (\delta y_i) u = - \sum_i x_i a y_i \delta u,
\]
whence
\[
(2) \quad f(x) u = -x \delta u \quad (x \in J, \ u \in L)
\]
and
\[
(3) \quad f(x) y u = -x \delta(y u) \quad (x \in J, \ y \in A, \ u \in L).
\]

By (2), \((f(x_1 + \lambda x_2) - f(x_1) - \lambda f(x_2)) u = 0 \) for all \(x_1, x_2 \in J, \ \lambda \in \mathbb{C} \) and \(u \in L \), whereas \(x = 0 \) implies that \(f(x) u = 0 \) for all \(u \in L \). Since \(L \) is essential, it follows that \(f \) is a well-defined linear mapping on \(J \).

Applying the Lemma to (2), we conclude that \(f \) is bounded with norm at most \(\|\delta\| \). Hence, replacing \(J \) by its closure, we may assume that \(J \) is closed.
Let \(J^\perp \) denote the annihilator of \(J \) in \(A \). If \(x_1 \in J, x_2 \in J^\perp \), we put \(\tilde{f}(x_1 + x_2) = f(x_1) \). Then, as \((1 - e_a)\delta L = 0 \),
\[
\tilde{f}(x_1 + x_2)u = f(x_1)u = -(x_1 + x_2)e_a\delta u = -(x_1 + x_2)\delta u \quad (u \in L).
\]
Hence, replacing \(J \) by \(J + J^\perp \) and \(f \) by \(\tilde{f} \), we may assume that \(J \) is an essential closed ideal in \(A \).

By (2),
\[
(f(yx) - yf(x))u = -(yx - yx)\delta u = 0 \quad (x \in J, y \in A, u \in L),
\]
whence \(f \) is a left \(A \)-module map. Put \(g = f - \delta \). Then,
\[
g(xy)u = f(xy)u - \delta(xy)u = -xy\delta u - \delta(xy)u \\
= -\delta(xyu) \\
= -(\delta x)yu - x\delta(yu) = f(xy) - (\delta x)yu \\
= g(xy)u
\]
for all \(x \in J, y \in A \) and \(u \in L \) so that \(g \) is a right \(A \)-module map from \(J \) into \(A \). Moreover, if \(x, y \in J \), then, by (3),
\[
f(xy)u = -(\delta y)u = -xy\delta u - x(\delta y)u = x(f(y) - \delta y)u = xg(y)u \quad (u \in L),
\]
and thus \(f(xy) = xg(y) \). As a result, \((f, g) \) is a double centralizer of \(J \) represented by an element \(h \in M(J) \). By definition, \(\delta = f - g = R_h - L_h = \delta_h \) on \(J \). From this we infer that
\[
(\delta y)x = \delta(yx) - y(\delta x) \\
= f(yx) - g(yx) - yf(x) + yg(x) \\
= yg(x) - g(yx) \\
= yhx - hyx = [y, h]x
\]
for all \(x \in J \) and \(y \in A \). Since \(J \) is essential, this yields that \(\delta = \delta_h \) on \(A \).

The identity
\[
a(yuh - hyu) = a\delta(yu) = 0 \quad (y \in A, u \in L)
\]
implies that
\[
M_{a,uh} = M_{ah,u} \quad (u \in L).
\]
Therefore, the mapping
\[
\sum_i x_iay_i + v \mapsto \sum_i x_iahy_i \quad (x_i, y_i \in A, \ v \in (AaA)^\perp)
\]
is a well-defined \(A \)-bimodule map from the essential ideal \(AaA + (AaA)^\perp \) into \(A \) which gives rise to an element \(\lambda \in C \) with the property \(\lambda a = ah \). This together with (4) entails that
\[
M_{a,uh} = M_{a,uh} - \lambda M_{a,u} = 0 \quad (u \in L),
\]
whence \(0 = e_a(u(h - \lambda) = u(h - \lambda) \) as \(e_a h = h \) and \(e_a \lambda = \lambda \). Replacing \(h \) by \(h - \lambda \), we thus obtain \(\delta = \delta_h \) as well as \(ah = 0 \) and \(Lh = 0 \). In particular, \(xhu = -x\delta u \) for all \(x \) in the domain of \(h \) and \(u \in L \) (that is, (2)); thus the same reasoning as before shows that \(h \) still is bounded with \(\|h\| \leq \|\delta\| \).
A more symmetric version of the condition appearing in Theorem A is obtained in our first corollary.

Corollary 1. Let δ be a derivation on a C^*-algebra A. For each pair of elements $a, b \in A$ such that

$$M_{a, b} + M_{a, b} \circ \delta = 0$$

there is $h \in Q_b(A)$ with the properties

$$e_a e_b \delta = \delta_h, \quad ah = bh = 0 \quad \text{and} \quad \|h\| \leq \|\delta\|.$$

Proof. We first follow the proof of Theorem A. Put $J = \delta L$ and $L = Ab$. Note that the left annihilators of L and Ab coincide. By assumption,

$$ay\delta(xb) + a(\delta y)xb = ay(\delta x)b + ayxb + ab(\delta y)b - ay(\delta x)b = 0$$

for all $x, y \in A$. Therefore (1) holds for all $u \in L$. Defining $f : J \to A$ as above, we thus obtain a well-defined bounded left A-module map $e_b f$ which we may extend to $J + J^\perp$ as before. Note that (2) changes to

$$(2) \quad e_b f(x) e_b u = -x \delta (e_a e_b u) \quad (x \in J + J^\perp, \ u \in L).$$

Letting $e_b g = e_b f - e_b \delta$, we obtain a bounded right A-module map on $J + J^\perp$ such that $e_b f(x) y = e_b xg(y)$ for all $x, y \in J$. Let h be the element in $Q_b(A)$ corresponding to the local double centralizer $(e_b f, e_b g)$ of A. Then, $e_b \delta = \delta_h$ on J. As above, this entails that $(e_b \delta - \delta_h)A \subseteq J^\perp$, so that $e_a e_b \delta = \delta_{h'}$ with $h' = e_a h$. Since we still have (4) with h' instead of h, we find $\lambda' = \lambda e_a \in C$ such that $\lambda' a = ah'$ as well as $\lambda' u = uh'$ for all $u \in L$. Now define h anew by $h = h' - e_b \lambda'$. Then, $e_a e_b h = h, ah = 0, Lh = 0$, and $e_a e_b \delta = \delta_h$. A final application of the Lemma yields $\|h\| \leq \|\delta\|$. \hfill \square

Corollary 2. For every derivation δ on a prime C^*-algebra A the following conditions are equivalent.

(a) There are a non-zero element $a \in A$ and a non-zero left ideal L of A such that $a \delta L = 0$.

(b) There is an element $h \in Q_b(A)$ such that $\delta = \delta_h$ and $yh = 0$ for some non-zero $y \in Q_b(A)$.

Proof. (a) \Rightarrow (b) As L is essential and $e_a = 1$, the assertion follows immediately from Theorem A.

(b) \Rightarrow (a) Let I be a non-zero closed ideal of A such that $y \in M(I)$, and put $L = Iy$. Then, for each non-zero $a \in L$ and all $u \in L$ we have $a \delta u = ahu - ahu = 0$, i.e. $a \delta L = 0$. \hfill \square

Our arrangement of the proof of Theorem A reveals that its algebraic part carries over verbatim to the setting of semiprime rings. Suppose that the element a in Theorem B below is zero. Then $\delta L = 0$, wherefore $(\delta y) u = \delta(y u) - y \delta u = 0$ for all $y \in R, u \in L$ implies that $\delta y = 0$ for all y. Thus, $a = 0$ entails that $\delta = 0$ and Theorem B extends the corresponding statement for prime rings in [5, Theorem], replacing the Martindale ring of quotients by its symmetric version.

Theorem B. Let δ be a derivation of a semiprime ring R. Suppose there exist an essential left ideal L of R and an element $a \in R$ satisfying $a \delta L = 0$ and $(1 - e_a) \delta L = 0$. Then there is $h \in Q_{a}(R)$ such that $\delta = \delta_h$, $ah = 0$, and $Lh = 0$.

REFERENCES

The Fields Institute for Research in Mathematical Sciences, Waterloo, Ontario, Canada

Current address: Department of Mathematics, St. Patrick’s College, Maynooth, Co. Kildare, Ireland

E-mail address: mm@maths.may.ie