The Dedekind-Mertens Lemma and the contents of polynomials
HTML articles powered by AMS MathViewer
- by William Heinzer and Craig Huneke PDF
- Proc. Amer. Math. Soc. 126 (1998), 1305-1309 Request permission
Abstract:
We prove a sharpening of the Dedekind-Mertens Lemma relating the contents of two polynomials to the content of their product. We show that for a polynomial $g$ the integer $1 + \deg (g)$ in the Dedekind-Mertens Lemma may be replaced by the number of local generators of the content of $g$. We also raise a question concerning the converse.References
- Jimmy T. Arnold and Robert Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc. 24 (1970), 556–562. MR 252360, DOI 10.1090/S0002-9939-1970-0252360-3
- D. D. Anderson and B. G. Kang, Content formulas for polynomials and power series and complete integral closure, J. Algebra 181 (1996), no. 1, 82–94. MR 1382027, DOI 10.1006/jabr.1996.0110
- A. Corso, W. Vasconcelos and R. Villarreal, Generic Gaussian ideals, J. Pure Appl. Algebra (to appear).
- R. Dedekind, Über einen arithmetischen Satz von Gauss, Gesammelte Werke XXII, Vol 2, Mitt. Deutsch. Math. Ges. Prague (1892), 1–11.
- Harold M. Edwards, Divisor theory, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1200892, DOI 10.1007/978-0-8176-4977-7
- Robert Gilmer, Anne Grams, and Tom Parker, Zero divisors in power series rings, J. Reine Angew. Math. 278(279) (1975), 145–164. MR 387274
- S. Glaz and W. Vasconcelos, The content of Gaussian polynomials, J. Algebra (to appear).
- William Heinzer and Craig Huneke, Gaussian polynomials and content ideals, Proc. Amer. Math. Soc. 125 (1997), no. 3, 739–745. MR 1401742, DOI 10.1090/S0002-9939-97-03921-X
- A. Hurwitz, Ueber einen Fundamentalsatz der arithmetischen Theorie der algebraischen Grössen, Nachr. kön Ges. Wiss. Göttingen (1895), 230–240.
- L. Kronecker, Zur Theorie der Formen höherer Stufen, Monatsber Akad. Wiss. Berlin (1883), 957–960.
- Wolfgang Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 46, Springer-Verlag, Berlin-New York, 1968 (German). Zweite, ergänzte Auflage. MR 0229623
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- F. Mertens, Über einen algebraischen Satz, S.-B. Akad. Wiss. Wien (2a) 101 (1892), 1560–1566.
- D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282–288. MR 110732, DOI 10.1017/s030500410003406x
- H. Prüfer, Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1–36.
Additional Information
- William Heinzer
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395
- Email: heinzer@math.purdue.edu
- Craig Huneke
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395
- MR Author ID: 89875
- Email: huneke@math.purdue.edu
- Received by editor(s): July 9, 1996
- Received by editor(s) in revised form: October 23, 1996
- Additional Notes: The second author was partially supported by the NSF
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1305-1309
- MSC (1991): Primary 13A15, 13B25, 13G05, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-98-04165-3
- MathSciNet review: 1425124