The determination of the pairs of two-bridge knots or links with Gordian distance one
HTML articles powered by AMS MathViewer
- by Ichiro Torisu PDF
- Proc. Amer. Math. Soc. 126 (1998), 1565-1571 Request permission
Abstract:
We thoroughly determine the pairs of two-bridge knots or links with Gordian distance one. In addition, we examine the Gordian distance between a Montesinos knot (or link) and a two-bridge knot (or link).References
- S. Boyer and X. Zhang, Exceptional surgery on knots, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 2, 197–203. MR 1260518, DOI 10.1090/S0273-0979-1994-00516-6
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- Steven C. Ferry and Arthur G. Wasserman, Morse theory for codimension-one foliations, Trans. Amer. Math. Soc. 298 (1986), no. 1, 227–240. MR 857441, DOI 10.1090/S0002-9947-1986-0857441-5
- I. Dazey and D. W. Sumners, A strand passage metric for topoisomerase action, Proceedings of Knots 96 (ed. by S. Suzuki), World Scientific Publishing Co. (1997), 267–278.
- C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), no. 2, 687–708. MR 682725, DOI 10.1090/S0002-9947-1983-0682725-0
- Wolfgang Heil, $3$-manifolds that are sums of solid tori and Seifert fiber spaces, Proc. Amer. Math. Soc. 37 (1973), 609–614. MR 356055, DOI 10.1090/S0002-9939-1973-0356055-X
- Taizo Kanenobu and Hitoshi Murakami, Two-bridge knots with unknotting number one, Proc. Amer. Math. Soc. 98 (1986), no. 3, 499–502. MR 857949, DOI 10.1090/S0002-9939-1986-0857949-8
- Peter Kohn, Two-bridge links with unlinking number one, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1135–1147. MR 1079893, DOI 10.1090/S0002-9939-1991-1079893-8
- W. B. Raymond Lickorish, The unknotting number of a classical knot, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 117–121. MR 813107, DOI 10.1090/conm/044/813107
- José María Montesinos, Classical tessellations and three-manifolds, Universitext, Springer-Verlag, Berlin, 1987. MR 915761, DOI 10.1007/978-3-642-61572-6
- José M. Montesinos, Surgery on links and double branched covers of $S^{3}$, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 227–259. MR 0380802
- Louise Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. MR 383406
- Motegi, K., A note on unlinking numbers of Montesinos links, Rev. Mat. Complut. Madrid 9 (1996), 151–164.
- Motegi, K., Bridge numbers of twisted Montesinos knots, Proceedings of The Institute of Natural Sciences, Nihon University No. 31 (1996).
- Hitoshi Murakami, Some metrics on classical knots, Math. Ann. 270 (1985), no. 1, 35–45. MR 769605, DOI 10.1007/BF01455526
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Torisu, I., A note on Montesinos links with unlinking number one (conjectures and partial solutions), Kobe J. of Math. 13 (1996), 167–175.
- I. Torisu, On nugatory crossings for knots, to appear in Topology and its Appl.
Additional Information
- Ichiro Torisu
- Affiliation: Department of Mathematics, Osaka University, Toyonaka, Osaka, 560, Japan
- Email: torisu@math.sci.osaka-u.ac.jp
- Received by editor(s): April 8, 1996
- Received by editor(s) in revised form: October 22, 1996
- Communicated by: Ronald A. Fintushel
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1565-1571
- MSC (1991): Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-98-04181-1
- MathSciNet review: 1425140