A note on Greenberg’s conjecture and the abc conjecture
HTML articles powered by AMS MathViewer
- by Humio Ichimura
- Proc. Amer. Math. Soc. 126 (1998), 1315-1320
- DOI: https://doi.org/10.1090/S0002-9939-98-04196-3
- PDF | Request permission
Abstract:
For any totally real number field $k$ and any prime number $p$, Greenberg’s conjecture for $(k,p)$ asserts that the Iwasawa invariants $\lambda _p(k)$ and $\mu _p(k)$ are both zero. For a fixed real abelian field $k$, we prove that the conjecture is “affirmative” for infinitely many $p$ (which split in $k)$ if we assume the abc conjecture for $k$.References
- John Coates, $p$-adic $L$-functions and Iwasawa’s theory, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 269–353. MR 0460282
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI 10.2307/1971116
- Takashi Fukuda and Keiichi Komatsu, On $\textbf {Z}_p$-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), no. 1, 95–102. MR 816225, DOI 10.2969/jmsj/03810095
- Roland Gillard, Unités cyclotomiques, unités semi-locales et $\textbf {Z}_{l}$, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xiv, 49–79 (French, with English summary). MR 526777
- Ralph Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284. MR 401702, DOI 10.2307/2373625
- H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, International J. Math., 7 (1996), 721–744.
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI 10.2307/1970784
- Serge Lang, Old and new conjectured Diophantine inequalities, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 37–75. MR 1005184, DOI 10.1090/S0273-0979-1990-15899-9
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
Bibliographic Information
- Humio Ichimura
- Affiliation: Department of Mathematics, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236 Japan
- Email: ichimura@yokohama-cu.ac.jp
- Received by editor(s): June 23, 1996
- Received by editor(s) in revised form: October 30, 1996
- Additional Notes: The author was partially supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.
- Communicated by: William W. Adams
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1315-1320
- MSC (1991): Primary 11R23
- DOI: https://doi.org/10.1090/S0002-9939-98-04196-3
- MathSciNet review: 1443156