Twist points of the von Koch snowflake
HTML articles powered by AMS MathViewer
- by Fausto Di Biase, Bert Fischer and Rüdiger L. Urbanke PDF
- Proc. Amer. Math. Soc. 126 (1998), 1487-1490 Request permission
Abstract:
It is known that the set of twist points in the boundary of the von Koch snowflake domain has full harmonic measure. We provide a new, simple proof, based on the doubling property of the harmonic measure, and on the existence of an equivalent measure, invariant and ergodic with respect to the shift.References
- Lennart Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 113–123. MR 802473, DOI 10.5186/aasfm.1985.1014
- W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
- Robert Kaufman and Jang-Mei Wu, On the snowflake domain, Ark. Mat. 23 (1985), no. 1, 177–183. MR 800179, DOI 10.1007/BF02384424
- Massimo A. Picardello, Mitchell H. Taibleson, and Wolfgang Woess, Harmonic measure of the planar Cantor set from the viewpoint of graph theory, Discrete Math. 109 (1992), no. 1-3, 193–202. Algebraic graph theory (Leibnitz, 1989). MR 1192382, DOI 10.1016/0012-365X(92)90290-V
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Ya. G. Sinaĭ, Topics in ergodic theory, Princeton Mathematical Series, vol. 44, Princeton University Press, Princeton, NJ, 1994. MR 1258087
- H. von Koch, Une méthode géométrique élémentaire pour l’étude de certain questions de la théorie des courbes planes, Acta Math. 30 (1906), 145–174.
Additional Information
- Fausto Di Biase
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- Email: biase@math.princeton.edu
- Bert Fischer
- Email: fischer@math.princeton.edu
- Rüdiger L. Urbanke
- Affiliation: Room 2C-254, Bell Labs, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
- Email: ruediger@research.bell-labs.com
- Received by editor(s): November 1, 1996
- Additional Notes: The first author was supported by CNR Grants 203.01.55 and 203.01.63.
The second author was partially supported by the Alexander von Humboldt Foundation. - Communicated by: Albert Baernstein II
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1487-1490
- MSC (1991): Primary 31A15, 30C35
- DOI: https://doi.org/10.1090/S0002-9939-98-04226-9
- MathSciNet review: 1443822