A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs
HTML articles powered by AMS MathViewer
- by László Lovász and Alexander Schrijver PDF
- Proc. Amer. Math. Soc. 126 (1998), 1275-1285 Request permission
Abstract:
For any undirected graph $G$, let $\mu (G)$ be the graph parameter introduced by Colin de Verdière. In this paper we show that $\mu (G)\leq 4$ if and only if $G$ is linklessly embeddable (in $\mathbb {R}^3$). This forms a spectral characterization of linklessly embeddable graphs, and was conjectured by Robertson, Seymour, and Thomas. A key ingredient is a Borsuk-type theorem on the existence of a pair of antipodal linked $(k-1)$-spheres in certain mappings $\phi :S^{2k}\to \mathbb {R}^{2k-1}$. This result might be of interest in its own right. We also derive that $\lambda (G)\leq 4$ for each linklessly embeddable graph $G=(V,E)$, where $\lambda (G)$ is the graph parameter introduced by van der Holst, Laurent, and Schrijver. (It is the largest dimension of any subspace $L$ of $\mathbb {R}^V$ such that for each nonzero $x\in L$, the positive support of $x$ induces a nonempty connected subgraph of $G$.)References
- Roland Bacher and Yves Colin de Verdière, Multiplicités des valeurs propres et transformations étoile-triangle des graphes, Bull. Soc. Math. France 123 (1995), no. 4, 517–533 (French, with English and French summaries). MR 1373946
- I. Bárány and L. Lovász, Borsuk’s theorem and the number of facets of centrally symmetric polytopes, Acta Math. Acad. Sci. Hungar. 40 (1982), no. 3-4, 323–329. MR 686332, DOI 10.1007/BF01903592
- Thomas Böhme, On spatial representations of graphs, Contemporary methods in graph theory, Bibliographisches Inst., Mannheim, 1990, pp. 151–167. MR 1126225
- Yves Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B 50 (1990), no. 1, 11–21 (French). MR 1070462, DOI 10.1016/0095-8956(90)90093-F
- Yves Colin de Verdière, On a new graph invariant and a criterion for planarity, Graph structure theory (Seattle, WA, 1991) Contemp. Math., vol. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 137–147. MR 1224700, DOI 10.1090/conm/147/01168
- Hein van der Holst, A short proof of the planarity characterization of Colin de Verdière, J. Combin. Theory Ser. B 65 (1995), no. 2, 269–272. MR 1358989, DOI 10.1006/jctb.1995.1054
- Hein van der Holst, Monique Laurent, and Alexander Schrijver, On a minor-monotone graph invariant, J. Combin. Theory Ser. B 65 (1995), no. 2, 291–304. MR 1358991, DOI 10.1006/jctb.1995.1056
- Hein van der Holst, László Lovász, and Alexander Schrijver, On the invariance of Colin de Verdière’s graph parameter under clique sums, Linear Algebra Appl. 226/228 (1995), 509–517. MR 1344582, DOI 10.1016/0024-3795(95)00160-S
- Neil Robertson, P. D. Seymour, and Robin Thomas, Structural descriptions of lower ideals of trees, Graph structure theory (Seattle, WA, 1991) Contemp. Math., vol. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 525–538. MR 1224730, DOI 10.1090/conm/147/01198
- Neil Robertson, Paul Seymour, and Robin Thomas, Sachs’ linkless embedding conjecture, J. Combin. Theory Ser. B 64 (1995), no. 2, 185–227. MR 1339849, DOI 10.1006/jctb.1995.1032
- H. Saran, Constructive Results in Graph Minors: Linkless Embeddings, Ph.D. Thesis, University of California at Berkeley, 1989.
- K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114 (1937) 570–590.
Additional Information
- László Lovász
- Affiliation: Department of Computer Science, Yale University, New Haven, Connecticut 06520
- Email: lovasz@cs.yale.edu
- Alexander Schrijver
- Affiliation: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
- Email: lex@cwi.nl
- Received by editor(s): October 15, 1996
- Additional Notes: Research partially done while visiting the Department of Computer Science at Yale University.
- Communicated by: Jeffry N. Kahn
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1275-1285
- MSC (1991): Primary 05C10, 05C50, 57M15; Secondary 05C50, 57N15
- DOI: https://doi.org/10.1090/S0002-9939-98-04244-0
- MathSciNet review: 1443840