Spectral averaging and the Krein spectral shift
HTML articles powered by AMS MathViewer
- by Barry Simon
- Proc. Amer. Math. Soc. 126 (1998), 1409-1413
- DOI: https://doi.org/10.1090/S0002-9939-98-04261-0
Abstract:
We provide a new proof of a theorem of Birman and Solomyak that if $A(s) = A_{0} + sB$ with $B\geq 0$ trace class and $d\mu _{s} (\cdot ) = \text {Tr}(B^{1/2} E_{A(s)}(\cdot ) B^{1/2})$, then $\int ^{1}_{0} [d\mu _{s} (\lambda )] ds = \xi (\lambda ) d\lambda$, where $\xi$ is the Krein spectral shift from $A(0)$ to $A(1)$. Our main point is that this is a simple consequence of the formula $\frac {d}{ds} \text {Tr}(f(A(s))=\text {Tr}(Bf’(A(s)))$.References
- M. Š. Birman and M. Z. Solomjak, Remarks on the spectral shift function, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 33–46 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 6. MR 0315482
- I. C. Gohberg and M. G. Kreĭn, Vvedenie v teoriyu lineĭ nykh nesamosopryazhennykh operatorov v gil′bertovom prostranstve, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0220070
- V. A. Javrjan, A certain inverse problem for Sturm-Liouville operators, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 2–3, 246–251 (Russian, with Armenian and English summaries). MR 0301565
- S. Kotani, Lyapunov exponents and spectra for one-dimensional random Schrödinger operators, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 277–286. MR 841099, DOI 10.1090/conm/050/841099
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- M. G. Kreĭn, On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268–271 (Russian). MR 0139006
- S. S. Gershteĭn, L. I. Ponomarev, and T. P. Puzynina, A quasiclassical approximation in the two-center problem, Soviet Physics JETP 21 (1965), 418–425. MR 0184647
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- Barry Simon, Spectral analysis of rank one perturbations and applications, Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993) CRM Proc. Lecture Notes, vol. 8, Amer. Math. Soc., Providence, RI, 1995, pp. 109–149. MR 1332038, DOI 10.1090/crmp/008/04
- Franz Wegner, Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), no. 1-2, 9–15. MR 639135, DOI 10.1007/BF01292646
Bibliographic Information
- Barry Simon
- Affiliation: Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 189013
- Email: bsimon@cco.caltech.edu
- Received by editor(s): October 14, 1996
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The government has certain rights in this material.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 Barry Simon
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1409-1413
- MSC (1991): Primary 47B10, 47A60
- DOI: https://doi.org/10.1090/S0002-9939-98-04261-0
- MathSciNet review: 1443857