Periodic groups of operators in Banach spaces
HTML articles powered by AMS MathViewer
- by B. Nagy PDF
- Proc. Amer. Math. Soc. 126 (1998), 1433-1444 Request permission
Abstract:
Spectral operators of scalar type in the sense of Dunford often occur in connection with unconditionally convergent series expansions, whereas conditionally convergent expansions under similar conditions may be described with the help of operators having a more general type of spectral decomposition. We show that under certain conditions even in the latter case we can restrict our considerations to a dense linear submanifold of the original Banach space with a stronger topology, where the convergence of the expansion under study will be unconditional. Though our conditions could be formulated in terms of a single operator, it seems to be more natural to state them in terms of (the generator of) a periodic group of operators.References
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Harold Benzinger, Earl Berkson, and T. A. Gillespie, Spectral families of projections, semigroups, and differential operators, Trans. Amer. Math. Soc. 275 (1983), no. 2, 431–475. MR 682713, DOI 10.1090/S0002-9947-1983-0682713-4
- Arlen Brown and Carl Pearcy, Introduction to operator theory. I, Graduate Texts in Mathematics, No. 55, Springer-Verlag, New York-Heidelberg, 1977. Elements of functional analysis. MR 0511596
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- R. E. Edwards, Fourier series. Vol. 2, 2nd ed., Graduate Texts in Mathematics, vol. 85, Springer-Verlag, New York-Berlin, 1982. A modern introduction. MR 667519
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Shmuel Kantorovitz, The semi-simplicity manifold of arbitrary operators, Trans. Amer. Math. Soc. 123 (1966), 241–252. MR 192346, DOI 10.1090/S0002-9947-1966-0192346-4
- Shmuel Kantorovitz, Spectrality criteria for unbounded operators with real spectrum, Math. Ann. 256 (1981), no. 1, 19–28. MR 620118, DOI 10.1007/BF01450939
- Shmuel Kantorovitz and Rhonda J. Hughes, Spectral representations for unbounded operators with real spectrum, Math. Ann. 282 (1988), no. 4, 535–544. MR 970217, DOI 10.1007/BF01462881
- C. A. McCarthy, Commuting Boolean algebras of projections, Pacific J. Math. 11 (1961), 295–307. MR 125448
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- W.Orlicz, Beiträge zur Theorie der Orthogonalentwicklungen II, Studia Math., 1 (1929), 241-255.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- D. R. Smart, Some examples of spectral operators, Illinois J. Math. 11 (1967), 603–607. MR 217635
Additional Information
- B. Nagy
- Affiliation: Department of Analysis, Institute of Mathematics, Technical University of Budapest, H-1521 Budapest, Hungary
- Email: bnagy@ch.bme.hu
- Received by editor(s): October 21, 1996
- Additional Notes: Supported by a Hungarian NSF Grant (OTKA No. T-016925)
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1433-1444
- MSC (1991): Primary 47B40, 47D03
- DOI: https://doi.org/10.1090/S0002-9939-98-04298-1
- MathSciNet review: 1443399