## Cohomology of certain congruence subgroups of the modular group

HTML articles powered by AMS MathViewer

- by Frank Williams and Robert J. Wisner PDF
- Proc. Amer. Math. Soc.
**126**(1998), 1331-1336 Request permission

## Abstract:

In this note we compute the integral cohomology groups of the subgroups $\Gamma _0(n)$ of $SL(2, \mathbf {Z})$ and the corresponding subgroups $P\Gamma _0(n)$ of its quotient, the classical modular group, $PSL(2, \mathbf {Z}).$## References

- A. Adem and N. Naffah,
*On the cohomology of $SL_2(\mathbf {Z}[1/p]),$*to appear in the Proceedings of the Durham Symposium (1994) on Geometry and Cohomology in Group Theory. - Yasuhiro Chuman,
*Generators and relations of $\Gamma _{0}(N)$*, J. Math. Kyoto Univ.**13**(1973), 381–390. MR**348001**, DOI 10.1215/kjm/1250523378 - Sabine Hesselmann,
*Zur Torsion der Kohomologie $S$-arithmetischer Gruppen*, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 257, Universität Bonn, Mathematisches Institut, Bonn, 1993 (German). MR**1286937** - Kenneth N. Moss,
*Homology of $\textrm {SL}(n,\,\textbf {Z}[1/p])$*, Duke Math. J.**47**(1980), no. 4, 803–818. MR**596115** - N. Naffah,
*On the integral Farrell cohomology ring of $PSL_2(\mathbf Z[1/n])$*, Thesis, ETH–Zurich, 1996. - Jean-Pierre Serre,
*Cohomologie des groupes discrets*, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169 (French). MR**0385006** - Jean-Pierre Serre,
*Trees*, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR**607504**

## Additional Information

**Frank Williams**- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Email: frank@nmsu.edu
**Robert J. Wisner**- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Received by editor(s): October 30, 1996
- Additional Notes: The authors would like to thank Alejandro Adem, Ross Staffeldt, Susan Hermiller, Ray Mines, and Morris Newman for their helpful comments.
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 1331-1336 - MSC (1991): Primary 20J05; Secondary 11F06
- DOI: https://doi.org/10.1090/S0002-9939-98-04367-6
- MathSciNet review: 1451836