Cohomology of certain congruence subgroups of the modular group
HTML articles powered by AMS MathViewer
- by Frank Williams and Robert J. Wisner PDF
- Proc. Amer. Math. Soc. 126 (1998), 1331-1336 Request permission
Abstract:
In this note we compute the integral cohomology groups of the subgroups $\Gamma _0(n)$ of $SL(2, \mathbf {Z})$ and the corresponding subgroups $P\Gamma _0(n)$ of its quotient, the classical modular group, $PSL(2, \mathbf {Z}).$References
- A. Adem and N. Naffah, On the cohomology of $SL_2(\mathbf {Z}[1/p]),$ to appear in the Proceedings of the Durham Symposium (1994) on Geometry and Cohomology in Group Theory.
- Yasuhiro Chuman, Generators and relations of $\Gamma _{0}(N)$, J. Math. Kyoto Univ. 13 (1973), 381–390. MR 348001, DOI 10.1215/kjm/1250523378
- Sabine Hesselmann, Zur Torsion der Kohomologie $S$-arithmetischer Gruppen, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 257, Universität Bonn, Mathematisches Institut, Bonn, 1993 (German). MR 1286937
- Kenneth N. Moss, Homology of $\textrm {SL}(n,\,\textbf {Z}[1/p])$, Duke Math. J. 47 (1980), no. 4, 803–818. MR 596115
- N. Naffah, On the integral Farrell cohomology ring of $PSL_2(\mathbf Z[1/n])$, Thesis, ETH–Zurich, 1996.
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169 (French). MR 0385006
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
Additional Information
- Frank Williams
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Email: frank@nmsu.edu
- Robert J. Wisner
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- Received by editor(s): October 30, 1996
- Additional Notes: The authors would like to thank Alejandro Adem, Ross Staffeldt, Susan Hermiller, Ray Mines, and Morris Newman for their helpful comments.
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1331-1336
- MSC (1991): Primary 20J05; Secondary 11F06
- DOI: https://doi.org/10.1090/S0002-9939-98-04367-6
- MathSciNet review: 1451836