Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Continuity of K-theory: An example in equal characteristics
HTML articles powered by AMS MathViewer

by Bjørn Ian Dundas PDF
Proc. Amer. Math. Soc. 126 (1998), 1287-1291 Request permission

Abstract:

If $k$ is a perfect field of characteristic $p>0$, we show that the Quillen K-groups $K_{i}(k[[t]])$ are uniquely $p$-divisible for $i=2,3$. In fact, the Milnor K-groups $K^{M}_{n}(k((t)))$ are uniquely $p$-divisible for all $n>1$. This implies that $K(A)\to {\operatorname *{holim}}_{\overleftarrow {n}} K(A/\mathfrak {m}^{n})$ is $4$-connected after profinite completion for $A$ a complete discrete valuation ring with perfect residue field.
References
  • A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
  • A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • M. Bökstedt and I. Madsen, Algebraic $K$-theory of local number fields: the unramified case, Prospects in topology (Princeton, NJ, 1994) Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 28–57. MR 1368652
  • R. Keith Dennis and Michael R. Stein, $K_{2}$ of discrete valuation rings, Advances in Math. 18 (1975), no. 2, 182–238. MR 437620, DOI 10.1016/0001-8708(75)90157-7
  • B. I. Dundas, A model for the K-theory of complete extensions, In preparation.
  • Ofer Gabber, $K$-theory of Henselian local rings and Henselian pairs, Algebraic $K$-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989) Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 59–70. MR 1156502, DOI 10.1090/conm/126/00509
  • S. M. Gersten, Some exact sequences in the higher $K$-theory of rings, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 211–243. MR 0354660
  • L. Hesselholt, Topological cyclic homology and local function fields, Aarhus Universitet, Preprint series (31) (December 1993).
  • Howard L. Hiller, $\lambda$-rings and algebraic $K$-theory, J. Pure Appl. Algebra 20 (1981), no. 3, 241–266. MR 604319, DOI 10.1016/0022-4049(81)90062-1
  • O. Izhboldin, On $p$-torsion in $K^M_*$ for fields of characteristic $p$, Algebraic $K$-theory, Adv. Soviet Math., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 129–144. MR 1124629
  • Ch. Kratzer, $\lambda$-structure en $K$-théorie algébrique, Comment. Math. Helv. 55 (1980), no. 2, 233–254 (French). MR 576604, DOI 10.1007/BF02566684
  • R. McCarthy, Relative algebraic K-theory and topological cyclic homology, To appear in Acta Math.
  • A. S. Merkur′ev and A. A. Suslin, The group $K_3$ for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522–545 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 3, 541–565. MR 1072694
  • John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
  • I. A. Panin, The Hurewicz theorem and $K$-theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 763–775, 878 (Russian). MR 864175
  • Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
  • A. A. Suslin, Algebraic $K$-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 222–244. MR 934225
  • J. B. Wagoner, Delooping the continuous $K$-theory of a valuation ring, Pacific J. Math. 65 (1976), no. 2, 533–538. MR 444744
Similar Articles
Additional Information
  • Bjørn Ian Dundas
  • Affiliation: Department of Mathematical Sciences, Section Gløshaugen, The Norwegian University of Science and Technology, N-7034 Trondheim, Norway
  • Email: dundas@math.ntnu.no
  • Received by editor(s): October 17, 1996
  • Additional Notes: The author was supported by the Danish research academy.
  • Communicated by: Thomas Goodwillie
  • © Copyright 1998 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 126 (1998), 1287-1291
  • MSC (1991): Primary 11S70; Secondary 13J05, 19D45, 19D50
  • DOI: https://doi.org/10.1090/S0002-9939-98-04382-2
  • MathSciNet review: 1452802