Continuity of K-theory: An example in equal characteristics
HTML articles powered by AMS MathViewer
- by Bjørn Ian Dundas
- Proc. Amer. Math. Soc. 126 (1998), 1287-1291
- DOI: https://doi.org/10.1090/S0002-9939-98-04382-2
- PDF | Request permission
Abstract:
If $k$ is a perfect field of characteristic $p>0$, we show that the Quillen K-groups $K_{i}(k[[t]])$ are uniquely $p$-divisible for $i=2,3$. In fact, the Milnor K-groups $K^{M}_{n}(k((t)))$ are uniquely $p$-divisible for all $n>1$. This implies that $K(A)\to {\operatorname *{holim}}_{\overleftarrow {n}} K(A/\mathfrak {m}^{n})$ is $4$-connected after profinite completion for $A$ a complete discrete valuation ring with perfect residue field.References
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- M. Bökstedt and I. Madsen, Algebraic $K$-theory of local number fields: the unramified case, Prospects in topology (Princeton, NJ, 1994) Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 28–57. MR 1368652
- R. Keith Dennis and Michael R. Stein, $K_{2}$ of discrete valuation rings, Advances in Math. 18 (1975), no. 2, 182–238. MR 437620, DOI 10.1016/0001-8708(75)90157-7
- B. I. Dundas, A model for the K-theory of complete extensions, In preparation.
- Ofer Gabber, $K$-theory of Henselian local rings and Henselian pairs, Algebraic $K$-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989) Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 59–70. MR 1156502, DOI 10.1090/conm/126/00509
- S. M. Gersten, Some exact sequences in the higher $K$-theory of rings, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 211–243. MR 0354660
- L. Hesselholt, Topological cyclic homology and local function fields, Aarhus Universitet, Preprint series (31) (December 1993).
- Howard L. Hiller, $\lambda$-rings and algebraic $K$-theory, J. Pure Appl. Algebra 20 (1981), no. 3, 241–266. MR 604319, DOI 10.1016/0022-4049(81)90062-1
- O. Izhboldin, On $p$-torsion in $K^M_*$ for fields of characteristic $p$, Algebraic $K$-theory, Adv. Soviet Math., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 129–144. MR 1124629
- Ch. Kratzer, $\lambda$-structure en $K$-théorie algébrique, Comment. Math. Helv. 55 (1980), no. 2, 233–254 (French). MR 576604, DOI 10.1007/BF02566684
- R. McCarthy, Relative algebraic K-theory and topological cyclic homology, To appear in Acta Math.
- A. S. Merkur′ev and A. A. Suslin, The group $K_3$ for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522–545 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 3, 541–565. MR 1072694
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- I. A. Panin, The Hurewicz theorem and $K$-theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 763–775, 878 (Russian). MR 864175
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- A. A. Suslin, Algebraic $K$-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 222–244. MR 934225
- J. B. Wagoner, Delooping the continuous $K$-theory of a valuation ring, Pacific J. Math. 65 (1976), no. 2, 533–538. MR 444744
Bibliographic Information
- Bjørn Ian Dundas
- Affiliation: Department of Mathematical Sciences, Section Gløshaugen, The Norwegian University of Science and Technology, N-7034 Trondheim, Norway
- Email: dundas@math.ntnu.no
- Received by editor(s): October 17, 1996
- Additional Notes: The author was supported by the Danish research academy.
- Communicated by: Thomas Goodwillie
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1287-1291
- MSC (1991): Primary 11S70; Secondary 13J05, 19D45, 19D50
- DOI: https://doi.org/10.1090/S0002-9939-98-04382-2
- MathSciNet review: 1452802