## On uniqueness of Riemann’s examples

HTML articles powered by AMS MathViewer

- by Yi Fang and Fusheng Wei PDF
- Proc. Amer. Math. Soc.
**126**(1998), 1531-1539 Request permission

## Abstract:

We prove that a properly embedded minimal annulus with one flat end, bounded in a slab by lines or circles, is a part of a Riemann’s example.## References

- J. L. Barbosa and M. do Carmo,
*On the size of a stable minimal surface in $R^{3}$*, Amer. J. Math.**98**(1976), no. 2, 515–528. MR**413172**, DOI 10.2307/2373899 - Michael Callahan, David Hoffman, and William H. Meeks III,
*The structure of singly-periodic minimal surfaces*, Invent. Math.**99**(1990), no. 3, 455–481. MR**1032877**, DOI 10.1007/BF01234428 - Isaac Chavel,
*Eigenvalues in Riemannian geometry*, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR**768584** - Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab,
*Minimal surfaces. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295, Springer-Verlag, Berlin, 1992. Boundary value problems. MR**1215267** - Yi Fang,
*On minimal annuli in a slab*, Comment. Math. Helv.**69**(1994), no. 3, 417–430. MR**1289335**, DOI 10.1007/BF02564495 - Yi Fang,
*Total curvature of branched minimal surfaces*, Proc. Amer. Math. Soc.**124**(1996), no. 6, 1895–1898. MR**1322922**, DOI 10.1090/S0002-9939-96-03296-0 - David Hoffman, Hermann Karcher, and Harold Rosenberg,
*Embedded minimal annuli in $\textbf {R}^3$ bounded by a pair of straight lines*, Comment. Math. Helv.**66**(1991), no. 4, 599–617. MR**1129800**, DOI 10.1007/BF02566668 - David Hoffman and William H. Meeks III,
*The asymptotic behavior of properly embedded minimal surfaces of finite topology*, J. Amer. Math. Soc.**2**(1989), no. 4, 667–682. MR**1002088**, DOI 10.1090/S0894-0347-1989-1002088-X - Albert Eagle,
*Series for all the roots of the equation $(z-a)^m=k(z-b)^n$*, Amer. Math. Monthly**46**(1939), 425–428. MR**6**, DOI 10.2307/2303037 - F. López, M. Ritoré and F. Wei. A characterization of Riemann’s minimal surfaces. to appear in
*Journal of Differential Geometry.* - William H. Meeks III,
*The geometry, topology, and existence of periodic minimal surfaces*, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 333–374. MR**1216594**, DOI 10.1090/pspum/054.1/1216594 - Johannes C. C. Nitsche,
*Lectures on minimal surfaces. Vol. 1*, Cambridge University Press, Cambridge, 1989. Introduction, fundamentals, geometry and basic boundary value problems; Translated from the German by Jerry M. Feinberg; With a German foreword. MR**1015936** - Robert Osserman,
*A survey of minimal surfaces*, 2nd ed., Dover Publications, Inc., New York, 1986. MR**852409** - Joaquín Pérez and Antonio Ros,
*Some uniqueness and nonexistence theorems for embedded minimal surfaces*, Math. Ann.**295**(1993), no. 3, 513–525. MR**1204835**, DOI 10.1007/BF01444900 - Pascal Romon,
*A rigidity theorem for Riemann’s minimal surfaces*, Ann. Inst. Fourier (Grenoble)**43**(1993), no. 2, 485–502 (English, with English and French summaries). MR**1220280** - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Éric Toubiana,
*On the minimal surfaces of Riemann*, Comment. Math. Helv.**67**(1992), no. 4, 546–570. MR**1185808**, DOI 10.1007/BF02566518

## Additional Information

**Yi Fang**- Affiliation: Centre for Mathematics and its Applications School of Mathematical Sciences Australian National University Canberra, ACT 0200, Australia
- Email: yi@maths.anu.edu.au
**Fusheng Wei**- Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0123
- Email: fwei@calvin.math.vt.edu
- Received by editor(s): October 21, 1996
- Additional Notes: The first author is supported by the Australian Research Council.
- Communicated by: Peter Li
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**126**(1998), 1531-1539 - MSC (1991): Primary 53A10; Secondary 35P99
- DOI: https://doi.org/10.1090/S0002-9939-98-04441-4
- MathSciNet review: 1459120