On uniqueness of Riemann’s examples
HTML articles powered by AMS MathViewer
- by Yi Fang and Fusheng Wei PDF
- Proc. Amer. Math. Soc. 126 (1998), 1531-1539 Request permission
Abstract:
We prove that a properly embedded minimal annulus with one flat end, bounded in a slab by lines or circles, is a part of a Riemann’s example.References
- J. L. Barbosa and M. do Carmo, On the size of a stable minimal surface in $R^{3}$, Amer. J. Math. 98 (1976), no. 2, 515–528. MR 413172, DOI 10.2307/2373899
- Michael Callahan, David Hoffman, and William H. Meeks III, The structure of singly-periodic minimal surfaces, Invent. Math. 99 (1990), no. 3, 455–481. MR 1032877, DOI 10.1007/BF01234428
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab, Minimal surfaces. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295, Springer-Verlag, Berlin, 1992. Boundary value problems. MR 1215267
- Yi Fang, On minimal annuli in a slab, Comment. Math. Helv. 69 (1994), no. 3, 417–430. MR 1289335, DOI 10.1007/BF02564495
- Yi Fang, Total curvature of branched minimal surfaces, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1895–1898. MR 1322922, DOI 10.1090/S0002-9939-96-03296-0
- David Hoffman, Hermann Karcher, and Harold Rosenberg, Embedded minimal annuli in $\textbf {R}^3$ bounded by a pair of straight lines, Comment. Math. Helv. 66 (1991), no. 4, 599–617. MR 1129800, DOI 10.1007/BF02566668
- David Hoffman and William H. Meeks III, The asymptotic behavior of properly embedded minimal surfaces of finite topology, J. Amer. Math. Soc. 2 (1989), no. 4, 667–682. MR 1002088, DOI 10.1090/S0894-0347-1989-1002088-X
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- F. López, M. Ritoré and F. Wei. A characterization of Riemann’s minimal surfaces. to appear in Journal of Differential Geometry.
- William H. Meeks III, The geometry, topology, and existence of periodic minimal surfaces, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 333–374. MR 1216594, DOI 10.1090/pspum/054.1/1216594
- Johannes C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, Cambridge University Press, Cambridge, 1989. Introduction, fundamentals, geometry and basic boundary value problems; Translated from the German by Jerry M. Feinberg; With a German foreword. MR 1015936
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
- Joaquín Pérez and Antonio Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513–525. MR 1204835, DOI 10.1007/BF01444900
- Pascal Romon, A rigidity theorem for Riemann’s minimal surfaces, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 2, 485–502 (English, with English and French summaries). MR 1220280
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Éric Toubiana, On the minimal surfaces of Riemann, Comment. Math. Helv. 67 (1992), no. 4, 546–570. MR 1185808, DOI 10.1007/BF02566518
Additional Information
- Yi Fang
- Affiliation: Centre for Mathematics and its Applications School of Mathematical Sciences Australian National University Canberra, ACT 0200, Australia
- Email: yi@maths.anu.edu.au
- Fusheng Wei
- Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0123
- Email: fwei@calvin.math.vt.edu
- Received by editor(s): October 21, 1996
- Additional Notes: The first author is supported by the Australian Research Council.
- Communicated by: Peter Li
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1531-1539
- MSC (1991): Primary 53A10; Secondary 35P99
- DOI: https://doi.org/10.1090/S0002-9939-98-04441-4
- MathSciNet review: 1459120