The primitive $p$-Frobenius groups
HTML articles powered by AMS MathViewer
- by P. Fleischmann, W. Lempken and Pham Huu Tiep PDF
- Proc. Amer. Math. Soc. 126 (1998), 1337-1343 Request permission
Abstract:
Let $p$ be a fixed prime. A finite primitive permutation group $G$ with every two-point stabilizer $G_{\alpha ,\beta }$ being a $p$-group is called a primitive $p$-Frobenius group. Using our earlier results on $p$-intersection subgroups, we give a complete classification of the primitive $p$-Frobenius groups.References
- Bernd Baumann, Endliche nichtauflösbare Gruppen mit einer nilpotenten maximalen Untergruppe, J. Algebra 38 (1976), no. 1, 119–135. MR 409639, DOI 10.1016/0021-8693(76)90249-0
- P. Fleischmann, W. Lempken and P.H. Tiep, Finite $p’$-semiregular groups, J. Algebra 188 $(1997)$, $547 - 579$.
- P. Fleischmann, W. Lempken and P.H. Tiep, The $p$-intersection subgroups in quasi-simple and almost simple finite groups, submitted.
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Robert Guralnick and Roger Wiegand, Galois groups and the multiplicative structure of field extensions, Trans. Amer. Math. Soc. 331 (1992), no. 2, 563–584. MR 1036008, DOI 10.1090/S0002-9947-1992-1036008-5
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl, On the O’Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A 44 (1988), no. 3, 389–396. MR 929529
- Leonard L. Scott, Representations in characteristic $p$, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 319–331. MR 604599
- H. Zassenhaus, Über endliche Fastkörper, Abhandl. Math. Sem. Hamburg. Univ. 11 $(1936)$, 187-220.
Additional Information
- P. Fleischmann
- Affiliation: (P. Fleischmann and W. Lempken) Institute for Experimental Mathematics, University of Essen, Ellernstr. 29, 45326 Essen, Germany
- Pham Huu Tiep
- Affiliation: (Pham Huu Tiep) Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- MR Author ID: 230310
- Email: tiep@math.ohio-state.edu
- Received by editor(s): June 19, 1996
- Received by editor(s) in revised form: November 5, 1996
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1337-1343
- MSC (1991): Primary 20B15
- DOI: https://doi.org/10.1090/S0002-9939-98-04491-8
- MathSciNet review: 1458871