On a theorem by do Carmo and Dajczer
HTML articles powered by AMS MathViewer
- by Guido Haak PDF
- Proc. Amer. Math. Soc. 126 (1998), 1547-1548 Request permission
Abstract:
We give a new proof of a theorem by M.P. do Carmo and M. Dajczer on helicoidal surfaces of constant mean curvature.References
- A. I. Bobenko, All constant mean curvature tori in $\textbf {R}^3,\;S^3,\;H^3$ in terms of theta-functions, Math. Ann. 290 (1991), no. 2, 209–245. MR 1109632, DOI 10.1007/BF01459243
- E. Bour, Memoire sur le deformation de surfaces, Journal de l’Ecole Polytechnique, XXXIX Cahier (1862), pp. 1–148.
- J. Dorfmeister and G. Haak, On symmetries of constant mean curvature surfaces, preprint 197, KITCS and SFB288, 1996.
- B. G. Konopelchenko and I. A. Taimanov, Constant mean curvature surfaces via an integrable dynamical system, J. Phys. A 29 (1996), no. 6, 1261–1265. MR 1385632, DOI 10.1088/0305-4470/29/6/012
- Manfredo P. do Carmo and Marcos Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. (2) 34 (1982), no. 3, 425–435. MR 676120, DOI 10.2748/tmj/1178229204
- U. Pinkall and I. Sterling, On the classification of constant mean curvature tori, Ann. of Math. (2) 130 (1989), no. 2, 407–451. MR 1014929, DOI 10.2307/1971425
- Takao Sasai, On helicoidal surfaces with constant mean curvature and their limiting surfaces, Tokyo J. Math. 19 (1996), no. 1, 39–50. MR 1391926, DOI 10.3836/tjm/1270043217
- Brian Smyth, A generalization of a theorem of Delaunay on constant mean curvature surfaces, Statistical thermodynamics and differential geometry of microstructured materials (Minneapolis, MN, 1991) IMA Vol. Math. Appl., vol. 51, Springer, New York, 1993, pp. 123–130. MR 1226924, DOI 10.1007/978-1-4613-8324-6_{9}
Additional Information
- Guido Haak
- Affiliation: Fachbereich Mathematik, TU-Berlin, D-10623 Berlin
- Email: haak@sfb288.math.tu-berlin.de
- Received by editor(s): November 1, 1996
- Additional Notes: The author was supported by Sonderforschungsbereich 288.
- Communicated by: Christopher Croke
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1547-1548
- MSC (1991): Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-98-04673-5
- MathSciNet review: 1476135