On the characterization of certain similarly ordered super-additive functionals
HTML articles powered by AMS MathViewer
- by Heinz J. Skala
- Proc. Amer. Math. Soc. 126 (1998), 1349-1353
- DOI: https://doi.org/10.1090/S0002-9939-98-04702-9
- PDF | Request permission
Abstract:
Functionals which behave (sub-, super-) additively on similarly ordered functions occur quite naturally in many contexts. In the present paper we characterize (super-) additive functionals which are defined on a family of functions with the Stone-property in terms of their naturally adjoined dyadic martingales. As corollaries we obtain essential generalizations of integral representations as derived by Schmeidler (1986) and discussed in a recent monograph of Denneberg (1994).References
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- C. Dellacherie, Quelques commentaires sur les prolongements de capacités, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 77–81 (French). MR 0382686
- Dieter Denneberg, Non-additive measure and integral, Theory and Decision Library. Series B: Mathematical and Statistical Methods, vol. 27, Kluwer Academic Publishers Group, Dordrecht, 1994. MR 1320048, DOI 10.1007/978-94-017-2434-0
- Itzhak Gilboa, Expected utility with purely subjective nonadditive probabilities, J. Math. Econom. 16 (1987), no. 1, 65–88. MR 885821, DOI 10.1016/0304-4068(87)90022-X
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge (1934).
- P. E. Kopp, Martingales and stochastic integrals, Cambridge University Press, Cambridge, 1984. MR 774050, DOI 10.1017/CBO9780511897221
- David Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986), no. 2, 255–261. MR 835875, DOI 10.1090/S0002-9939-1986-0835875-8
- David Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57 (1989), no. 3, 571–587. MR 999273, DOI 10.2307/1911053
Bibliographic Information
- Heinz J. Skala
- Affiliation: Department of Statistics, University of Paderborn, Warburgerstrasse 100, 33095 Paderborn, Germany
- Received by editor(s): August 29, 1996
- Communicated by: J. Marshall Ash
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1349-1353
- MSC (1991): Primary 28C05; Secondary 47H07, 60A05, 90A05
- DOI: https://doi.org/10.1090/S0002-9939-98-04702-9
- MathSciNet review: 1476392