Coherent rings of finite weak global dimension
HTML articles powered by AMS MathViewer
- by Edgar E. Enochs, Juan Martínez Hernández and Alberto del Valle PDF
- Proc. Amer. Math. Soc. 126 (1998), 1611-1620 Request permission
Abstract:
The category of left modules over right coherent rings of finite weak global dimension has several nice features. For example, every left module over such a ring has a flat cover (Belshoff, Enochs, Xu) and, if the weak global dimension is at most two, every left module has a flat envelope (Asensio, Martínez). We will exploit these features of this category to study its objects. In particular, we will consider orthogonal complements (relative to the extension functor) of several classes of modules in this category. In the case of a commutative ring we describe an idempotent radical on its category of modules which, when the weak global dimension does not exceed 2, can be used to analyze the structure of the flat envelopes and of the ring itself.References
- J. Asensio Mayor and J. Martínez Hernández, Monomorphic flat envelopes in commutative rings, Arch. Math. (Basel) 54 (1990), no. 5, 430–435. MR 1049197, DOI 10.1007/BF01188669
- J. Asensio Mayor and J. Martínez Hernández, On flat and projective envelopes, J. Algebra 160 (1993), no. 2, 434–440. MR 1244922, DOI 10.1006/jabr.1993.1195
- Richard Belshoff, Edgar E. Enochs, and Jin Zhong Xu, The existence of flat covers, Proc. Amer. Math. Soc. 122 (1994), no. 4, 985–991. MR 1209416, DOI 10.1090/S0002-9939-1994-1209416-4
- Ladislav Bican, T. Kepka, and P. Němec, Rings, modules, and preradicals, Lecture Notes in Pure and Applied Mathematics, vol. 75, Marcel Dekker, Inc., New York, 1982. MR 655412
- Jose Luis Bueso Montero, Blas Torrecillas Jover, and Alain Verschoren, Local cohomology and localization, Pitman Research Notes in Mathematics Series, vol. 226, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1088249
- Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. MR 636889, DOI 10.1007/BF02760849
- Edgar Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), no. 2, 179–184. MR 754698, DOI 10.1090/S0002-9939-1984-0754698-X
- José L. Gómez Pardo and Nieves Rodríguez González, On some properties of IF rings, Quaestiones Math. 5 (1983), no. 4, 395–405. MR 700517
- J. Martínez Hernández, M. Saorín, and A. del Valle, Noncommutative rings whose modules have essential flat envelopes, J. Algebra 177 (1995), no. 2, 434–450. MR 1355209, DOI 10.1006/jabr.1995.1306
- B. L. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 127 (1967), 136–149. MR 206074, DOI 10.1090/S0002-9947-1967-0206074-0
- Judith D. Sally and Wolmer V. Vasconcelos, Flat ideals I, Comm. Algebra 3 (1975), 531–543. MR 379466, DOI 10.1080/00927877508822059
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953
- Wolmer V. Vasconcelos, The rings of dimension two, Lecture Notes in Pure and Applied Mathematics, Vol. 22, Marcel Dekker, Inc., New York-Basel, 1976. MR 0427290
- Jin Zhong Xu, The existence of flat covers over Noetherian rings of finite Krull dimension, Proc. Amer. Math. Soc. 123 (1995), no. 1, 27–32. MR 1242111, DOI 10.1090/S0002-9939-1995-1242111-5
Additional Information
- Edgar E. Enochs
- Affiliation: (Edgar E. Enochs) Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- Email: enochs@ms.uky.edu
- Juan Martínez Hernández
- Email: juan@fcu.um.es
- Alberto del Valle
- Affiliation: (Juan Martínez Hernández and Alberto del Valle) Departamento de Matemáticas, Universidad de Murcia, 30001 Murcia, Spain
- Email: alberto@fcu.um.es
- Received by editor(s): February 1, 1996
- Received by editor(s) in revised form: November 19, 1996
- Additional Notes: The second and third authors are supported by the DGICYT of Spain (PB93-0515-C02-02) and by the Comunidad Autónoma de la Región de Murcia (PIB94/25).
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1611-1620
- MSC (1991): Primary 13C11, 13D05, 16D40, 16E70
- DOI: https://doi.org/10.1090/S0002-9939-98-04191-4
- MathSciNet review: 1443151
Dedicated: Dedicated to the memory of Professor Maurice Auslander