A characterization of Gorenstein rings in characteristic $p\ (>0)$
HTML articles powered by AMS MathViewer
- by S. P. Dutta PDF
- Proc. Amer. Math. Soc. 126 (1998), 1637-1643 Request permission
Abstract:
A new characterization of Gorenstein rings in characteristic $p (>0)$ is proved. It involves asymptotic behaviour of lengths of modules under the Frobenius map.References
- Sankar P. Dutta, Frobenius and multiplicities, J. Algebra 85 (1983), no. 2, 424–448. MR 725094, DOI 10.1016/0021-8693(83)90106-0
- S. P. Dutta, Ext and Frobenius, J. Algebra 127 (1989), no. 1, 163–177. MR 1029410, DOI 10.1016/0021-8693(89)90281-0
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Stephen Lichtenbaum, On the vanishing of $\textrm {Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220–226. MR 188249
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Paul Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 417–436. MR 1015532, DOI 10.1007/978-1-4612-3660-3_{2}3
- Gerhard Seibert, Complexes with homology of finite length and Frobenius functors, J. Algebra 125 (1989), no. 2, 278–287. MR 1018945, DOI 10.1016/0021-8693(89)90164-6
Additional Information
- S. P. Dutta
- Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
- Email: dutta@math.uiuc.edu
- Received by editor(s): March 15, 1996
- Received by editor(s) in revised form: November 26, 1996
- Additional Notes: This research was partially supported by an NSF grant and an NSA grant.
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1637-1643
- MSC (1991): Primary 13D02, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-98-04228-2
- MathSciNet review: 1443824