On weighted weak type inequalities for modified Hardy operators
HTML articles powered by AMS MathViewer
- by F. J. Martín-Reyes and P. Ortega PDF
- Proc. Amer. Math. Soc. 126 (1998), 1739-1746 Request permission
Abstract:
We characterize the pairs of weights $(w,v)$ for which the modified Hardy operator $Tf(x)=g(x)\int _{0}^{x}f$ applies $L^{p}(v)$ into weak-$L^{q}(w)$ where $g$ is a monotone function and $1\le q<p<\infty$.References
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI 10.4064/sm-72-1-9-26
- J. Scott Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), no. 4, 405–408. MR 523580, DOI 10.4153/CMB-1978-071-7
- Elida V. Ferreyra, Weighted Lorentz norm inequalities for integral operators, Studia Math. 96 (1990), no. 2, 125–134. MR 1052629, DOI 10.4064/sm-96-2-125-134
- F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), no. 3, 691–698. MR 1111435, DOI 10.1090/S0002-9939-1993-1111435-2
- F. J. Martín-Reyes, P. Ortega Salvador and M. D. Sarrión Gavilán, Boundedness of operators of Hardy type in $\Lambda ^{p,q}$ spaces and weighted mixed inequalities for singular integral operators, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 157–170.
- F. J. Martín-Reyes and A. de la Torre, Some weighted inequalities for general one-sided maximal operators, Studia Math. 122 (1997), 1–14.
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- Qinsheng Lai, A note on the weighted norm inequality for the one-sided maximal operator, Proc. Amer. Math. Soc. 124 (1996), no. 2, 527–537. MR 1301523, DOI 10.1090/S0002-9939-96-03099-7
- Eric Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), no. 1, 329–337. MR 719673, DOI 10.1090/S0002-9947-1984-0719673-4
Additional Information
- F. J. Martín-Reyes
- Affiliation: Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Email: martin@anamat.cie.uma.es
- P. Ortega
- Affiliation: Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Email: ortega@anamat.cie.uma.es
- Received by editor(s): September 8, 1995
- Received by editor(s) in revised form: December 1, 1996
- Additional Notes: This research has been partially supported by D.G.I.C.Y.T. grant (PB94-1496) and Junta de Andalucía
- Communicated by: J. Marshall Ash
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1739-1746
- MSC (1991): Primary 26D15
- DOI: https://doi.org/10.1090/S0002-9939-98-04247-6
- MathSciNet review: 1443843