On the suspension order of $(RP^{2m})^{[k]}$
HTML articles powered by AMS MathViewer
- by Paul Silberbush and Jack Ucci
- Proc. Amer. Math. Soc. 126 (1998), 1867-1872
- DOI: https://doi.org/10.1090/S0002-9939-98-04259-2
- PDF | Request permission
Abstract:
It is shown that the suspension order of the $k$-fold cartesian product $(RP^{2m})^{[k]}$ of real projective $2m$-space $RP^{2m}$ is less than or equal to the suspension order of the $k$-fold symmetric product $SP^{k}RP^{2m}$ of $RP^{2m}$ and greater than or equal to $2^{r+s+1}$, where $k$ and $m$ satisfy $2^{r} \le 2m < 2^{r+1}$ and $2^{s}\le k<2^{s+1}$. In particular $RP^{2} \times RP^{2}$ has suspension order $8$, and for fixed $m\ge 1$ the suspension orders of the spaces $(RP^{2m})^{[k]}$ are unbounded while their stable suspension orders are constant and equal to $2^{\phi (2m)}$.References
- M. G. Barratt, Spaces of finite characteristic, Quart. J. Math. Oxford Ser. (2) 11 (1960), 124β136. MR 120647, DOI 10.1093/qmath/11.1.124
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82β96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Exponents in homotopy theory, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp.Β 3β34. MR 921471
- J. L. Dupont and G. Lusztig, On manifolds satisfying $w_{1}{}^{2}=0$, Topology 10 (1971), 81β92. MR 273631, DOI 10.1016/0040-9383(71)90031-0
- Juno Mukai, A note on the Kahn-Priddy map, J. Math. Soc. Japan 40 (1988), no.Β 1, 53β63. MR 917394, DOI 10.2969/jmsj/04010053
- Juno Mukai, A remark on Todaβs result about the suspension order of the stunted real projective space, Mem. Fac. Sci. Kyushu Univ. Ser. A 42 (1988), no.Β 2, 87β94. MR 963198, DOI 10.2206/kyushumfs.42.87
- P. Silberbush, Suspension orders and cartesian products, Preprint.
- Hirosi Toda, Order of the identity class of a suspension space, Ann. of Math. (2) 78 (1963), 300β325. MR 156347, DOI 10.2307/1970345
Bibliographic Information
- Paul Silberbush
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- Jack Ucci
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- Email: jjucci@tristano.syr.edu
- Received by editor(s): November 19, 1996
- Communicated by: Thomas Goodwillie
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1867-1872
- MSC (1991): Primary 55P35; Secondary 55S15
- DOI: https://doi.org/10.1090/S0002-9939-98-04259-2
- MathSciNet review: 1443856