The entropy of rational Powers shifts
HTML articles powered by AMS MathViewer
- by Geoffrey L. Price PDF
- Proc. Amer. Math. Soc. 126 (1998), 1715-1720 Request permission
Abstract:
The Connes-Størmer entropy of all rational Powers shifts is shown to be $\frac 12\log 2$.References
- Marie Choda, Entropy for $\ast$-endomorphisms and relative entropy for subalgebras, J. Operator Theory 25 (1991), no. 1, 125–140. MR 1191256
- A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of $C^\ast$ algebras and von Neumann algebras, Comm. Math. Phys. 112 (1987), no. 4, 691–719. MR 910587
- A. Connes and E. Størmer, Entropy for automorphisms of $II_{1}$ von Neumann algebras, Acta Math. 134 (1975), no. 3-4, 289–306. MR 454657, DOI 10.1007/BF02392105
- V. Golodets and E. Størmer, Entropy of $C^*$-dynamical systems defined by bitstreams, Univ. of Oslo preprint, 1996.
- H. Narnhofer, E. Størmer and W. Thirring, A $C^*$- dynamical system for which the tensor product formula for entropy fails, Ergodic Theory and Dynamical Systems 15 (1995), 961–968.
- Heide Narnhofer and W. Thirring, Chaotic properties of the noncommutative $2$-shift, From phase transitions to chaos, World Sci. Publ., River Edge, NJ, 1992, pp. 530–546. MR 1172553
- Robert T. Powers, An index theory for semigroups of $^*$-endomorphisms of ${\scr B}({\scr H})$ and type $\textrm {II}_1$ factors, Canad. J. Math. 40 (1988), no. 1, 86–114. MR 928215, DOI 10.4153/CJM-1988-004-3
- Robert T. Powers and Geoffrey L. Price, Binary shifts on the hyperfinite $\textrm {II}_1$ factor, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 453–464. MR 1216203, DOI 10.1090/conm/145/1216203
- Robert T. Powers and Geoffrey L. Price, Cocycle conjugacy classes of shifts on the hyperfinite $\textrm {II}_1$ factor, J. Funct. Anal. 121 (1994), no. 2, 275–295. MR 1272129, DOI 10.1006/jfan.1994.1050
- G. Price, Shifts on the hyperfinite $\mathrm {II}_1$ factor, USNA preprint.
- G. Price, Cocycle conjugacy classes of shifts on the hyperfinite $\mathrm {II}_1$ factor, J. Oper. Theory, to appear.
- Geoffrey L. Price, Shifts on type $\textrm {II}_1$ factors, Canad. J. Math. 39 (1987), no. 2, 492–511. MR 899846, DOI 10.4153/CJM-1987-021-2
Additional Information
- Geoffrey L. Price
- Affiliation: Department of Mathematics 9E, United States Naval Academy, Annapolis, Maryland 21012
- MR Author ID: 142055
- Email: glp@sma.usna.navy.mil
- Received by editor(s): November 19, 1996
- Additional Notes: The author was supported in part by a grant from the National Security Agency and by a United States Naval Academy Recognition Grant
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1715-1720
- MSC (1991): Primary 46L55, 46L40, 46L10
- DOI: https://doi.org/10.1090/S0002-9939-98-04304-4
- MathSciNet review: 1443405