Renormalized oscillation theory for Dirac operators
HTML articles powered by AMS MathViewer
- by Gerald Teschl
- Proc. Amer. Math. Soc. 126 (1998), 1685-1695
- DOI: https://doi.org/10.1090/S0002-9939-98-04310-X
Abstract:
Oscillation theory for one-dimensional Dirac operators with separated boundary conditions is investigated. Our main theorem reads: If $\lambda _{0,1}\in \mathbb R$ and if $u,v$ solve the Dirac equation $H u= \lambda _0 u$, $H v= \lambda _1 v$ (in the weak sense) and respectively satisfy the boundary condition on the left/right, then the dimension of the spectral projection $P_{(\lambda _0, \lambda _1)}(H)$ equals the number of zeros of the Wronskian of $u$ and $v$. As an application we establish finiteness of the number of eigenvalues in essential spectral gaps of perturbed periodic Dirac operators.References
- W. Bulla, F. Gesztesy, and K. Unterkofler, On relativistic energy band corrections in the presence of periodic potentials, Lett. Math. Phys. 15 (1988), no. 4, 313–324. MR 952454, DOI 10.1007/BF00419589
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- I. S. Frolov, An inverse scattering problem for the Dirac system on the entire axis, Dokl. Akad. Nauk SSSR 207 (1972), 44–47 (Russian). MR 0316804
- F. Gesztesy, B. Simon, and G. Teschl, Zeros of the Wronskian and renormalized oscillation theorems, Am. J. Math. 118, 571–594 (1996).
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- D. B. Hinton and J. K. Shaw, Asymptotics of solutions and spectra of perturbed periodic Hamiltonian systems, Differential equations and mathematical physics (Birmingham, Ala., 1986) Lecture Notes in Math., vol. 1285, Springer, Berlin, 1987, pp. 169–174. MR 921266, DOI 10.1007/BFb0080594
- D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of perturbed periodic Hamiltonian systems, Rocky Mountain J. Math. 17 (1987), no. 4, 727–748. MR 923743, DOI 10.1216/RMJ-1987-17-4-727
- D. B. Hinton, A. B. Mingarelli, T. T. Read, and J. K. Shaw, On the number of eigenvalues in the spectral gap of a Dirac system, Proc. Edinburgh Math. Soc. (2) 29 (1986), no. 3, 367–378. MR 865270, DOI 10.1017/S0013091500017818
- K. Kreith Oscillation Theory, Lecture Notes in Mathematics 324, Springer, Berlin 1973.
- B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. MR 1136037, DOI 10.1007/978-94-011-3748-5
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- William T. Reid, Sturmian theory for ordinary differential equations, Applied Mathematical Sciences, vol. 31, Springer-Verlag, New York-Berlin, 1980. With a preface by John Burns. MR 606199
- F. S. Rofe-Beketov, A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential, Dokl. Akad. Nauk SSSR 156 (1964), 515–518 (Russian). MR 0160967
- J.C.F. Sturm Mémoire sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1, 106–186 (1836).
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- G. Teschl, Oscillation theory and renormalized oscillation theory for Jacobi operators, J. Diff. Eqs. 129, 532–558 (1996).
- Bernd Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. MR 1219537, DOI 10.1007/978-3-662-02753-0
- S. Timischl, A trace formula for one-dimensional Dirac operators, diploma thesis, University of Graz, Austria, 1995.
- K. Unterkofler, Periodische Potentiale in der eindimensionalen Diracgleichung, diploma thesis, Technical University of Graz, Austria, 1986.
- Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320, DOI 10.1007/BFb0077960
- Joachim Weidmann, Zur Spektraltheorie von Sturm-Liouville-Operatoren, Math. Z. 98 (1967), 268–302 (German). MR 213915, DOI 10.1007/BF01112407
- Joachim Weidmann, Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen, Math. Z. 119 (1971), 349–373 (German). MR 285758, DOI 10.1007/BF01109887
- Joachim Weidmann, Absolut stetiges Spektrum bei Sturm-Liouville-Operatoren und Dirac-Systemen, Math. Z. 180 (1982), no. 3, 423–427 (German). MR 664527, DOI 10.1007/BF01214182
Bibliographic Information
- Gerald Teschl
- Affiliation: Institut für Reine und Angewandte Mathematik RWTH Aachen 52056 Aachen Germany
- Address at time of publication: Institut für Mathematik, Universität Wien, Strudelhofgasse 4, 1090 Vienna, Austria
- Email: gerald@mat.univie.ac.at
- Received by editor(s): November 7, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 by the author
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1685-1695
- MSC (1991): Primary 34C10, 39L40; Secondary 34B24, 34L15
- DOI: https://doi.org/10.1090/S0002-9939-98-04310-X
- MathSciNet review: 1443411