Hermite distributions associated to the group $O(p,q)$
HTML articles powered by AMS MathViewer
- by Gerald B. Folland PDF
- Proc. Amer. Math. Soc. 126 (1998), 1751-1763 Request permission
Abstract:
We calculate the tempered $O(p,q)$-invariant eigendistributions of the $O(p,q)$-invariant Hermite operator \begin{equation*}-{\textstyle {\frac {1}{2}}}(\Delta _{x}- \Delta _{y}) +{\textstyle {\frac {1}{2}}}(|x|^{2}-|y|^{2})\qquad (x\in \mathbb {R}^{p}, y\in \mathbb {R}^{q}).\end{equation*} They are singular on the cone $|x|=|y|$ and are given elsewhere in terms of confluent hypergeometric functions.References
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Georges de Rham, Solution élémentaire d’opérateurs différentiels du second ordre, Ann. Inst. Fourier (Grenoble) 8 (1958), 337–366 (French). MR 117437
- Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992. Applications of $\textrm {SL}(2,\textbf {R})$. MR 1151617, DOI 10.1007/978-1-4613-9200-2
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201–218. MR 126154, DOI 10.7146/math.scand.a-10610
Additional Information
- Gerald B. Folland
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- Email: folland@math.washington.edu
- Received by editor(s): December 5, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1751-1763
- MSC (1991): Primary 33E30; Secondary 33C15, 35C05
- DOI: https://doi.org/10.1090/S0002-9939-98-04331-7
- MathSciNet review: 1451801