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A NORMAL SCREENABLE

NONPARACOMPACT SPACE IN ZFC

ZOLTAN T. BALOGH

(Communicated by Franklin D. Tall)

Abstract. We construct a normal, screenable, nonparacompact space in ZFC.
The existence of such a space is also known to imply that there is a normal,
screenable space which is not collectionwise normal.

Introduction

Screenability (the property that every open cover has a σ-disjoint open refine-
ment) was introduced and studied in R.H. Bing’s 1951 paper on metrization [B].
An interesting question left open, first appearing four years later in a paper by K.
Nagami [N], asks whether normality and screenability together are equivalent to
paracompactness. The problem was restated as Classic Problem III in the prob-
lem section of the first volume of Topology Proceedings in 1976 ([TP], pp. 363-4).
Seven years later, M.E. Rudin [R1] constructed a counter-example using �++, a
combinatorial principle valid under the assumption of V = L.

The subject matter of this paper is to settle this problem in ZFC:

Theorem I. There is a normal, screenable space which is not paracompact.

Theorem I also answers Problem 51 in [W].
By another result of M.E. Rudin [R2], it follows from Theorem I that there is a

normal, screenable space which is not collectionwise normal, answering a question
of F. Tall [T1], [T2]. (Cf. Theorem 6.2.)

Sections 1-5 in our paper are devoted to the proof of Theorem I. Section 6
contains some concluding remarks.

Our terminology and notation follows the standards of set-theoretic topology
[KV]. Space means Hausdorff topological space. By a result of Nagami [N], to
prove that a normal, screenable space is not paracompact, we have to show that it
is not even countably paracompact. The following simple proposition follows from
the standard characterization of countable paracompactness given by C.H. Dowker
[D].

Proposition 0.1. Suppose that a space X has an increasing open cover 〈Wn〉n∈ω
such that for every sequence 〈Gn〉n∈ω of open sets with Gn ⊃ X\Wn(n ∈ ω) we
have

⋂
n∈ωGn 6= ∅. Then X is not countably paracompact.
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1. The construction of X

The underlying set of X is c×ω, which we also denote byX . Let π : X → c be the
natural projection. For every n ∈ ω, let Ln = c×{n} and Wn = c×n (=

⋃
k<n Lk).

For every x ∈ X , let Bx = X\{x}, and let

B0 = {Bx : x ∈ X} ∪ {Wn : n ∈ ω}.
B0 will be part of a base for the topology of X to be defined. Including the sets
Bx makes sure that X is T1, and {Wn}n∈ω is an increasing open cover of X .

In order to make X normal, we need the concept of a Type 1 pair. S = 〈S0, S1〉
is called a Type 1 pair iff S0 ∪ S1 = X . Some of these Type 1 pairs will be open
covers of the topology of X (to be constructed), in which case we will give them a
clopen disjoint refinement 〈B0, B1〉.

We are also going to make each subspace Wn (ultra) paracompact, thereby mak-
ing sure that X is screenable. To do this, let us say that a sequence 〈Sρ〉ρ<c is a
Type 2 sequence of height n iff

⋃
ρ<c S

ρ = Wn. Some of these Type 2 sequences

will be open covers of Wn, in which case we give them a clopen (in Wn) disjoint
refinement 〈Eρ〉ρ<c.

Finally, to make sure that X is not (countably) paracompact we will do the con-
struction so that {Wn}n∈ω becomes an open cover with no locally finite refinement.
Control pairs defined below will help us achieve that.

For every subset A of X , let

S � A =

{
〈S0 ∩A, S1 ∩ A〉 if S is a Type 1 sequence,

〈Sρ ∩A〉ρ∈π(A), if S is a Type 2 sequence.

Definition 1.1. A pair 〈A, d〉 is called a control pair if the following conditions
hold:

(C-1) A is a countably infinite subset of X ;
(C-2) d is a countable function with dom(d) ⊂ {S � A : S is a Type 1 or Type 2

sequence} and range (d) ⊂ c.

Let 〈Aβ , dβ〉β<c list all control pairs, mentioning each c times.
Let 〈Sξ〉ξ<2c be a list of all Type 1 or Type 2 sequences, mentioning each 2c

times. By transfinite induction on ξ we are going to define an increasing sequence
〈Bξ〉ξ<2c of families of subsets of X . The topology of X will be generated by
B =

⋃
ξ<2c Bξ as a subbase. We will say that Y is ξ-open (ξ-closed) if Y is open

(closed) in the topology on X generated by Bξ as a subbase.
B0 was defined at the beginning of this section.
Suppose now that 0 < τ < 2c and we have already defined Bξ for every ξ < τ .
If τ is a limit ordinal, then let Bτ =

⋃
ξ<τ Bξ.

If τ = ξ + 1, then we consider three cases, depending on ξ.

Case 1. Assume that Sξ = 〈S0
ξ , S

1
ξ 〉 is a Type 1 pair, S0

ξ and S1
ξ are both ξ-open,

and there is no η < ξ such that Sη = Sξ and S0
η , S

1
η are both η-open.

In this case we are going to split X into two disjoint subsets B0
ξ and B1

ξ such

that Bi
ξ ⊂ Siξ for i = 0, 1. Then we set

Bξ+1 = Bξ ∪ {B0
ξ , B

1
ξ}.

If x = 〈β, k〉 ∈ X , then let us write x(ξ) = i (or 〈β, k〉(ξ) = i) iff x ∈ Bi
ξ.
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To define 〈B0
ξ , B

1
ξ 〉 we have to decide, for each β < c, the values 〈β, k〉(ξ), k ∈ ω.

We consider two subcases, depending on β.

Subcase 1.a. Suppose that Sξ � Aβ ∈ dom(dβ) and dβ(Sξ � Aβ) ∈ {0, 1}. Then,
with the notation dβ(Sξ � Aβ) = i, let’s set, for each k ∈ ω,

〈β, k〉(ξ) =

{
i, if 〈β, k〉 ∈ Siξ;

1− i, otherwise.

Subcase 1.b. If Subcase 1.a does not hold, then set, for every k ∈ ω,

〈β, k〉(ξ) =

{
0, if 〈β, k〉 ∈ S0

ξ ;

1, otherwise.

Case 2. Assume that Sξ = 〈Sρξ 〉ρ<c is a Type 2 sequence of some height n ∈ ω, Sρξ
is ξ-open for every ρ < c, and there is no η < ξ such that Sη = Sξ and Sρη is η-open
for every ρ < c.

In this case we are going to define a partition 〈Eρ
ξ 〉ρ<c of Wn into pairwise disjoint

sets such that Eρ
ξ ⊂ Sρξ for every ρ < c. (Some of the sets Sρξ and Eρ

ξ may be empty.)
Then we set

Bξ+1 = Bξ ∪
{
Eρ
ξ : ρ < c

}
.

For each x = 〈β, k〉 ∈ Wn, let us write x(ξ) = ρ (or 〈β, k〉(ξ) = ρ) iff x ∈ Eρ
ξ .

To define 〈Eρ
ξ 〉ρ<c we have to decide, for each β < c, the values 〈β, k〉(ξ), k < n.

Depending on β, we consider two subcases.

Subcase 2.a. Suppose Sξ � Aβ ∈ dom(dβ). Then, with the notation dβ(Sξ � Aβ) =
ρ, let’s set, for each k < n,

〈β, k〉(ξ) =

{
ρ, if 〈β, k〉 ∈ Sρξ ;

min{σ : 〈β, k〉 ∈ Sσξ }, otherwise.

Subcase 2.b. If Subcase 2.a does not hold, then set 〈β, k〉(ξ) = min{σ : 〈β, k〉 ∈ Sσξ }
for every k < n.

Case 3. If neither Case 1 nor Case 2 holds for ξ, then let Bξ+1 = Bξ.
Having finished the construction of 〈Bξ〉ξ<2c (and thus, the construction of the

topology of X), let us set

H1 = {ξ < 2c : Case 1 holds for ξ},
H2 = {ξ < 2c : Case 2 holds for ξ},
H = H1 ∪H2.

Note that by the minimality of ξ in Cases 1 and 2 we have the following.

Proposition 1.2. If ξ, η ∈ H and Sξ = Sη, then ξ = η.

Finally, by the definition of 〈β, k〉(ξ) in Subcases 1.a and 2.a we have the follow-
ing.



1838 ZOLTAN T. BALOGH

Observation 1.3.

(a) If ξ ∈ H1, then to prove 〈β, k〉 ∈ Bi
ξ it is enough to show that 〈β, k〉 ∈ Siξ

and dβ(Sξ � Aβ) = i.
(b) If ξ ∈ H2, then to prove 〈β, k〉 ∈ Eρ

ξ it is enough to show that 〈β, k〉 ∈ Sρξ
and dβ(Sξ � Aβ) = ρ.

2. X is normal and screenable

Proposition 2.1. X is normal.

Proof. It is enough to show that every open cover 〈U0, U1〉 of X by two open sets
has a shrinking 〈B0, B1〉 into disjoint clopen sets. Since |X | = c, U0 and U1 are
both unions of ≤ c basic open sets. By cf(2c) > c, there is a Θ < 2c such that U0

and U1 are both ξ-open for ξ ≥ Θ. Since each Type 1 pair is listed in 〈Sξ〉ξ<2c 2c

many times, there is a ξ < 2c such that Sξ = 〈U0, U1〉 and U0 and U1 are ξ-open.
Let us take the smallest such ξ. Then ξ ∈ H1 and by Case 1 in the construction of
X , 〈B0

ξ , B
1
ξ 〉 is a shrinking of 〈U0, U1〉 into disjoint clopen sets.

Remark. The above proof shows that X is even strongly zero-dimensional.

Proposition 2.2. X is screenable.

Proof. We are going to show that each of the open subspaces Wn, n ∈ ω, is
ultraparacompact, i.e. every open cover of Wn has a refinement by pairwise disjoint
clopen subspaces. To prove this, fix n, and let 〈Uρ〉ρ<c be an open cover of Wn ,
with repetitions permitted. As in the proof of Proposition 2.1 it follows that there
is a smallest ξ < 2c such that Sξ = 〈Uρ〉ρ<c, and Uρ is ξ-open for every ρ < c.
Then ξ ∈ H2, and by Case 2 in the construction of X , 〈Eρ

ξ 〉ρ<c is a refinement of

〈Uρ〉ρ<c by pairwise disjoint clopen (in Wn) subsets of Wn.

The proof that X is not (countably) paracompact will be contained in Sections
4 and 5.

3. Complete neighborhoods

Let x = 〈β, k〉 ∈ X . By the definition of the topology of X , the basic open
neighborhoods of x have the form

Vt,K(x) =
⋂
ξ∈t

Tξ(x) ∩ (Wk+1\K),

where t ∈ [H ]<ω, K ∈ [Wk+1]
<ω, and for every ξ ∈ t,

Tξ(x) =

{
B
x(ξ)
ξ , if ξ ∈ H1,

E
x(ξ)
ξ , if ξ ∈ H2.

For every ξ < 2c, let

Vt,K,ξ(x) =
⋂

η∈t∩ξ
Tη(x) ∩ (Wk+1\K).

Definition 3.1. A neighborhood Vt,K(x) of x ∈ X is said to be complete if for
every ξ ∈ t,

Vt,K,ξ(x) ⊂ S
x(ξ)
ξ .

Otherwise, Vt,K(x) is called incomplete.
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The following observation will be useful later.

Lemma 3.2. If Vt,K(x) is a neighborhood of x = 〈β, k〉 ∈ X, then there are t∗ ⊃
t, K∗ ⊃ K such that Vt∗,K∗(x) is a complete neighborhood of x.

Proof. For every incomplete neighborhood Vt′,K′(x) of x with t′ ⊃ t and K ′ ⊃ K,

let ξt′,K′ be the smallest ξ ∈ t′ such that Vt′,K′,ξ(x) 6⊂ S
x(ξ)
ξ . Our lemma then

follows from the following claim by the fact that 2c is well-founded.

Claim. If t′ ⊃ t,K ′ ⊃ K and Vt′,K′(x) is an incomplete neighborhood of x, then
there are t′′ ⊃ t′, K ′′ ⊃ K ′ such that Vt′′,K′′(x) is either a complete neighborhood
of x or an incomplete neighborhood with ξt′′,K′′ < ξt′,K′ .

To prove the claim, let η = ξt′,K′ . Since S
x(η)
η is η-open, there are t ∈ [H ∩ η]<ω

and K ∈ [X ]<ω such that Vt,K(x) is a neighborhood of x with Vt,K(x) ⊂ S
x(η)
η .

Then t′′ = t′ ∪ t,K ′′ = K ′ ∪K are as required.

4. X is not countably paracompact: reflecting the sets Gk

Let us arbitrarily choose a decreasing sequence of open sets Gk ⊃ X\Wk, k ∈ ω.
By Lemma 0.1, in order to show that X is not countably paracompact, it is enough
to show that

⋂
k∈ω Gk 6= ∅. This will take up Sections 4 and 5, during which we

keep 〈Gk〉k∈ω fixed.
For every k ∈ ω, let ξk denote the unique element of H1 such that Sξk =

〈Wk, Gk〉. Note that B0
ξk
⊂ Wk, B

1
ξk
⊂ Gk is a partition of X into disjoint clopen

sets. For every x = 〈β, k〉 ∈ X , let V (x) = Vt(x),K(x)(x) be a neighborhood of x such

that {ξj : j ≤ k} ⊂ t(x), and thus, V (x) ⊂ B1
ξk
⊂ Gk. Let ti(x) = t(x) ∩Hi (i =

1, 2), and set Vξ(x) = Vt(x),K(x),ξ(x) for every ξ < 2c. For every C ∈ [X ]ω, let
〈ξj(C)〉j<ω be a list, with repetitions permitted, of t1(C) =

⋃
x∈C t1(x). Since

replacing V (x) by a smaller neighborhood preserves V (x) ⊂ Gk, by induction on
β < c (and on k ∈ ω for each β) we can make sure that the following conditions
also hold for every β < c:

(4-1) if β > sup π (Aβ), then {ξj(Aβ) : j < k} ⊂ t1(β, k) for every k ∈ ω;
(4-2) j < k < ω implies t1(β, j) ⊂ t1(β, k);
(4-3) each Vt(x),K(x)(x) is a complete neighborhood of x = 〈β, k〉 for every k ∈ ω.

For the rest of Sections 4 and 5, we are going to assume that we have fixed a
V (x) = Vt(x),K(x)(x) satisfying (4-1), (4-2) and (4-3).

Next, let us fix two countable elementary submodels M,N of H
(
(22c

)+
)

= {all

sets whose transitive closure has cardinality ≤ 22c} in such a way that M ∈ N and

c, 〈Sξ〉ξ<2c , H1, t : X → [H ]<ω, K : X → [X ]<ω, 〈x(ξ)〉〈ξ,x〉∈H1×X
are all elements of M .

Let A = N ∩X(= (N ∩ c) × ω)) and R = t1(A) ∩M . Note that by (4-1),

β > sup(N ∩ c) and Aβ = A imply R ⊂
⋃
k∈ω

t1(β, k).(4-4)

Definition 4.1. Let βn > sup(N ∩ c), n ∈ ω, be a sequence of ordinals. We say
that a sequence xn = 〈αn, kn〉 ∈ N,n ∈ ω, is an increasing reflection of 〈βn〉n∈ω
if the following conditions hold:

(4-5) for every n ∈ ω, t1(xn)∩M = t1(βn, kn)∩M , and whenever ξ ∈ t1(xn)∩M ,
then xn(ξ) = 〈βn, kn〉(ξ);
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(4-6) t1(xn)\M, n ∈ ω, are pairwise disjoint;
(4-7) k0 < · · · < kn < · · · , and for every n ∈ ω and ξ ∈ ⋃j<n t2(xj), kn > height

of Sξ;
(4-8) if Aβn = A for every n ∈ ω, then for every Θ ∈ R we have Θ ∈ t1(xn) for

all but finitely many n ∈ ω.

Lemma 4.2. For every sequence βn > sup(N ∩ c), n ∈ ω, of ordinals in c there is
an increasing reflection 〈xn〉n∈ω of 〈βn〉n∈ω.

Proof. By induction on n ∈ ω, we are going to define 〈xn〉n∈ω in such a way that
(4-5), (4-6) and (4-7) are satisfied. ((4-8) will then automatically follow.)

Suppose 〈xj〉j<n is defined. Then take kn ∈ ω such that kn > k0, · · · , kn−1 and
ξ ∈ ⋃j<n t2(xj) implies kn > height of Sξ. Define a finite function r by setting

dom(r) = t1(βn, kn) ∩M and, for every ξ ∈ dom(r), r(ξ) = i iff 〈βn, kn〉(ξ) = i.
Note that r ∈M .

Consider the property
φ(α) : t1(α, kn) ⊃ dom(r) and 〈α, kn〉(ξ) = r(ξ) for every ξ ∈ dom(r).
Note that φ(α) can be described by a formula with all parameters from M , and

that for βn > sup(N ∩ c), φ(βn) holds.
Let D be a maximal subset of {α ∈ c : φ(α)} such that t1(α, kn)\dom(r), α ∈ D,

are pairwise disjoint. Since t1, c, r ∈ M , we can take such a D ∈ M . If D was
countable, then we would have D ⊂ M , and then D ∪ {βn} would contradict the
maximality of D. Hence D is uncountable, and thus there is an αn ∈ D such that

(t1(αn, kn)\dom(r)) ∩ (M ∪
⋃
j<n

t1(xj)) = ∅.(∗)

Since D, t1, r,M, 〈xj〉j<n ∈ N , we can pick such an αn ∈ N .
We are going to show that xn = 〈αn, kn〉 is as required to satisfy (4-5), (4-6) and

(4-7).
(4-5). Since φ(αn) holds, t1(xn) ∩M ⊃ dom(r) = t1(βn, kn) ∩M . By (∗)

(t1(xn)\dom(r)) ∩M = ∅,
i.e.

t1(xn) ∩M ⊂ dom(r) = t1(βn, kn) ∩M.

Finally, for every ξ ∈ dom(r), xn(ξ) = r(ξ) by φ(αn) and 〈βn, kn〉(ξ) = r(ξ) by the
definition of r; hence xn(ξ) = 〈βn, kn〉(ξ).

(4-6) By (∗), t1(xn)\M = t1(xn)\(t1(xn) ∩ M
)

= t1(xn)\ dom(r) is disjoint
from t(xj)\M for every j < n.

Finally, at the beginning of the proof of Lemma 4.2, we chose kn ∈ ω so that it
satisfied (4-7).

Having constructed 〈xn〉n∈ω in N satisfying (4-5) through (4-7), it only remains
to prove that 〈xn〉n∈ω also satisfies (4-8). To prove this, suppose that Aβn = A for
every n ∈ ω, and let Θ ∈ R(= t1(A) ∩M). Then Θ = ξj(A) for some j < ω. We
are going to show that Θ ∈ t1(xn) for every n > j. Fix n. Since kn ≥ n, it follows
from Aβn = A and (4-1) that Θ ∈ t1(βn, kn). Since Θ ∈ R ⊂M , we conclude that
Θ ∈ t1(βn, kn) ∩M = t1(xn) ∩M ⊂ t1(xn).

When defining control pairs 〈A, d〉 in Sections 5 and 6, the following observation
will be useful.

Proposition 4.3. If ξ, η ∈ N ∩H and Sξ � A = Sη � A, then ξ = η.
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Proof. Since 〈Sξ〉ξ<2c ∈ M ⊂ N, it follows that ξ, η ∈ N and Sξ � A = Sη � A
imply N |= Sξ = Sη, which in turn implies Sξ = Sη. Then ξ = η by Proposition
1.2.

5. X is not countably paracompact:

⋂
k∈ω Gk 6= ∅

Let β, γ ∈ c and ξ ∈ H1. We shall write β ≈ξ γ iff 〈β, k〉(ξ) = 〈γ, k〉(ξ) for every
k ∈ ω. We will say that γ is ξ-homogeneous iff either {γ}×ω ⊂ B0

ξ or {γ}×ω ⊂ B1
ξ .

Otherwise we call γ ξ-splitting. We shall say that k ∈ ω is above the split of ξ at
γ iff both ({γ} × (k + 1)) ∩ B0

ξ 6= ∅ and ({γ} × (k + 1)) ∩B1
ξ 6= ∅. γ will be called

R-homogeneous if γ is ξ-homogeneous for every ξ ∈ R.

Lemma 5.1. There is a γ >sup(N ∩ c) which is R-homogeneous.

Proof. Suppose indirectly that there is no such γ. Then to get a contradiction, we
are going to construct a strictly increasing ω1-sequence 〈Θν〉ν<ω1 of ordinals in R,
contradicting the countability of R.

For every γ > sup(N ∩ c), let Θ(γ) denote the smallest Θ ∈ R such that γ is not
Θ-homogeneous.

A sequence 〈γν〉ν<ω1 will be called a consistent ω1-sequence iff the following
conditions hold for every ν < ω1:

(5-1) if µ < ν, then sup(N ∩ c) < γµ < γν ;
(5-2) with the notation Θ(γν) = Θν , µ < ν implies Θµ < Θν ;
(5-3) Aγν = A;
(5-4) if µ < ν and ξ ∈ R ∩Θµ, then γµ ≈ξ γν .

We are going to build a consistent ω1-sequence 〈γν〉ν<ω1 by transfinite induction.
To start, take any γ0 > sup(N ∩ c) such that Aγ0 = A. Then (5-1) through (5-4)
are clearly satisfied for ν = 0.

Suppose now that 0 < δ < ω1 and for every ν < δ we have constructed γν in
such a way that (5-1) through (5-4) are satisfied. Then we split finding γδ into two
cases.

Case 1. Suppose δ = ν + 1 is a successor ordinal. Then by Lemma 4.2 we can
take an increasing reflection xn = 〈αn, kn〉 ∈ N, n ∈ ω, of the constant sequence
βn = γν . Fix i ∈ {0, 1} such that xn(Θν) = i for infinitely many n ∈ ω. Then let us
define the function d by setting dom(d) = {Sξ � A : ξ ∈ ⋃n∈ω t(xn) ∩Θν ∪ {Θν}},
and, with the notation t∗(xn) = t(xn) ∩Θν , by letting

d(Sξ � A) =

{
xn(ξ), if ξ ∈ t∗(xn)\⋃j<n t

∗(xj);
i if ξ = Θν.

Note that
⋃
n∈ω t(xn) ∩Θν ∪ {Θν} ⊂ N ∩H , and thus, by Proposition 4.3, d is

well-defined.
Now let β ∈ c be such that β > γν and 〈Aβ , dβ〉 = 〈A, d〉, and set Θ = Θ(β).

We are going to show that choosing γδ = β satisfies (5-1) through (5-4) (with δ in
place of ν).

(5-1) and (5-3) follow from the definition of β.
To prove (5-2) it is enough to prove that Θ > Θν . Let y = 〈β, 0〉, and for

every n ∈ ω, let y[n] = {β} × (kn + 1). Fix n ∈ ω. We will show that y[n] ⊂
VΘν (xn)

(
= Vt(xn),K(xn),Θν

(xn) =
⋂
ξ∈t(xn)∩Θν

Tξ(xn) ∩ (Wkn+1\K(xn)
)
; cf. the

beginning of Section 4 and the beginning of Section 3).
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Since K(xn) ⊂ N and β /∈ N, y[n] ⊂ Wkn+1\K(xn). By induction on ξ ∈
t(xn) ∩Θν = t∗(xn), we are going to show that ξ ∈ t∗(xn) implies

(Iξ) y[n] ⊂ Tξ(xn).

Suppose ξ ∈ t∗(xn) and that for every η ∈ t∗(xn) ∩ ξ, (Iη) holds. Then y[n] ⊂
Vξ(xn) ⊂ S

xn(ξ)
ξ . Thus by Observation 1.3, to prove (Iξ) it is enough to show that

d(Sξ � A) = xn(ξ).(∗)
To prove (∗), recall that ξ ∈ t∗(xn). If ξ /∈ ⋃j<n t

∗(xj), then (∗) follows directly
from the definition of d.

So suppose that there is a j < n such that ξ ∈ t∗(xj)\
⋃
`<j t

∗(x`). Then

d(Sξ � A) = xj(ξ)

by the definition of d.
If ξ ∈ H2, then our assumptions that ξ ∈ t∗(xn) and ξ ∈ t∗(xj) contradict

(4-7) in the definition of an increasing reflection. Similarly, ξ ∈ H1\M contradicts
(4-6). Thus only ξ ∈ H1 ∩ M is possible. Then ξ ∈ t1(xj) ∩ M , so by (4-5),
xj(ξ) = 〈γν , kj〉(ξ). (Recall that βj = γν for every j ∈ ω.) Now note that ξ ∈
t∗(xj) ∩H1 ∩M = t(xj) ∩Θν ∩H1 ∩M = t1(xj) ∩M ∩Θν ⊂ R ∩Θν , and thus γν
is ξ-homogeneous. Hence 〈γν , kj〉(ξ) = 〈γν , kn〉(ξ). Since ξ ∈ t1(xn) ∩M , by (4-5),
〈γν , kn〉(ξ) = xn(ξ). We conclude that xj(ξ) = xn(ξ) and hence (∗) holds.

Having proved (Iξ) for every ξ ∈ t∗(xn) we conclude that

y[n] ⊂ VΘν (xn) for every n ∈ ω.

We can now finish the proof of Θ > Θν in the following steps.

1. Θ < Θν is impossible. Indeed, if Θ < Θν , then by Θ ∈ R and by (4-8) we
can pick an n ∈ ω such that Θ ∈ t1(xn) and kn is above the split of Θ at β.
Since Θ ∈ t∗(xn) = t(xn)∩Θν , we conclude by (IΘ) that y[n] ⊂ TΘ(xn), in
contradiction with our assumption that kn is above the split of Θ at β.

2. Θ = Θν is impossible. To see this, pick an n ∈ ω such that xn(Θν) = i
and kn is above the split of Θ at β. We have already proved that y[n] ⊂
VΘν (xn) ⊂ S

xn(Θν)
Θν

= SiΘν
. By the definition of d, d(SΘν � A) = i. Since

〈Aβ , dβ〉 = 〈A, d〉, by Observation 1.3, it follows that y[n] ⊂ Bi
Θν

. Then
Θ = Θν would contradict our assumption that kn is above the split of Θ at
β.

It only remains to prove that (5-4) holds for γδ = β, i.e. µ < δ and ξ ∈ R ∩Θµ

imply γµ ≈ξ β. Since δ = ν + 1 and (5-4) holds for ν, it is enough to show that
ξ ∈ R∩Θν implies γν ≈ξ β. Since ξ < Θν < Θ, both γν and β are ξ-homogeneous.
Thus it suffices to find at least one kn ∈ ω such that 〈γν , kn〉(ξ) = 〈β, kn〉(ξ).
To do this, let n ∈ ω be so big that ξ ∈ t1(xn). (Such an n exists by (4-8).)
Then ξ ∈ t(xn) ∩ Θν = t∗(xn); hence by (Iξ), y[n] ⊂ Tξ(xn). In particular,
〈β, kn〉(ξ) = xn(ξ). On the other hand, ξ ∈ t1(xn) ∩ R = t1(xn) ∩M . Hence by
(4-5), xn(ξ) = 〈γν , kn〉(ξ). Hence 〈β, kn〉(ξ) = xn(ξ) = 〈γν , kn〉(ξ).
Case 2. Suppose that δ < ω1 is a limit ordinal. Let us pick a strictly increasing
sequence 〈δn〉n∈ω of ordinals cofinal in δ, and let’s set βn = γδn for every n ∈ ω. Let
〈xn〉n∈ω, xn = 〈αn, kn〉, be an increasing reflection of 〈βn〉n∈ω. Define the function
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d by setting dom(d) = {Sξ � A : ξ ∈ ⋃n∈ω t(xn) ∩ Θδn}, and, with the notation
t∗(xn) = t(xn) ∩Θδn(= t(xn) ∩Θ(γδn)), by letting

d(Sξ � A) = xn(ξ) for every ξ ∈ t∗(xn)\
⋃
j<n

t∗(xj).

Since
⋃
n∈ω t

∗(xn) ⊂ N ∩H, d is well-defined by Proposition 4.3. Now let β ∈ c
be such that β > sup{γδn : n ∈ ω} and 〈Aβ , dβ〉 = 〈A, d〉, and let Θ = Θ(β). We
are going to show that choosing γδ = β satisfies (5-1) through (5-4) (with δ in place
of ν).

(5-1) and (5-3) follow from the definition of β.
In order to start the proof of (5-2), let y = 〈β, 0〉, and for every n ∈ ω, let

y[n] = {β} × (kn + 1).
Fix n ∈ ω. We will show that y[n] ⊂ VΘδn

(xn). Since K(xn) ⊂ N and β /∈
N, y[n] ⊂ Wkn+1\K(xn). By induction on ξ ∈ t∗(xn) we are going to show that
ξ ∈ t∗(xn) implies

y[n] ⊂ Tξ(xn).(Jξ)

Suppose that ξ ∈ t∗(xn) and that for every η ∈ t∗(xn) ∩ ξ, (Jη) holds. Then

y[n] ⊂ Vξ(xn) ⊂ S
xn(ξ)
ξ . Thus by Observation 1.3, to prove (Jξ) it is enough to

show that

d(Sξ � A) = xn(ξ).(∗∗)
To prove (∗∗) recall that ξ ∈ t∗(xn). If ξ /∈ ⋃j<n t

∗
j (xj), then (∗∗) follows directly

from the definition of d.
So suppose that there is a j < n such that ξ ∈ t∗(xj)\

⋃
`<j t

∗(x`). Then

d(Sξ � A) = xj(ξ)

by the definition of d. Since ξ ∈ H2 would contradict (4-7) and ξ ∈ H1\M would
contradict (4-6), it follows that ξ ∈ H1 ∩M . Then ξ ∈ t1(xj) ∩M , so by (4-5),
xj(ξ) = 〈γδj , kj〉(ξ). Since ξ ∈ t∗(xj) ⊂ R ∩ Θδj and δj < δn, it follows that
γδj ≈ξ γδn . Hence 〈γδj , kj〉(ξ) = 〈γδn , kj〉(ξ). Since ξ < Θδj < Θδn , γδn is ξ-
homogeneous. Hence 〈γδn , kj〉(ξ) = 〈γδn , kn〉(ξ). Finally ξ ∈ t1(xn) ∩ M , so by
(4-5), 〈γδn , kn〉(ξ) = xn(ξ). The sequence of equalities just proved shows that
d(Sξ � A) = xj(ξ) = xn(ξ).

Having proved (Jξ) for every ξ ∈ t∗(xn) and n ∈ ω, we can easily finish the
proof of Θ ≥ sup{Θδn : n ∈ ω}. Let us assume indirectly that Θ < Θδn for some
n ∈ ω. By (4-8) we can assume that Θ ∈ t1(xn) and kn is above the split of Θ at
β. Since Θ ∈ t∗(xn) = t(xn) ∩ Θδn , we conclude by (JΘ) that y[n] ⊂ TΘ(xn), in
contradiction with our assumption that kn is above the split of Θ at β.

Finally, to prove that (5-4) holds for γδ = β, it is enough to verify that for
every n ∈ ω and ξ ∈ R ∩ Θδn , γδn ≈ξ β. Fix n ∈ ω and ξ ∈ R ∩ Θδn . Since
ξ < Θδn < Θ, both γδn and β are ξ-homogeneous. Thus it suffices to find at least
one kn ∈ ω such that 〈γδn , kn〉(ξ) = 〈β, kn〉(ξ). To do this, pick, by (4-8), an n
such that ξ ∈ t1(xn). Then ξ ∈ t(xn)∩Θδn = t∗(xn), so by (Jξ), y[n] ⊂ Tξ(xn). In
particular, 〈β, kn〉(ξ) = xn(ξ). On the other hand ξ ∈ t1(xn) ∩R = t1(xn) ∩M , so
by (4-5), xn(ξ) = 〈γδn , kn〉(ξ). Hence 〈β, kn〉(ξ) = 〈γδn , kn〉(ξ).

We have completed the construction of a consistent ω1-sequence and thus the
proof of Lemma 5.1.
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The following corollary finishes the proof that X is not countably paracompact.

Corollary 5.2.
⋂
k∈ω Gk 6= ∅.

Proof. Note first that by B1
ξk

⊂ Gk, it is enough to prove that
⋂
k∈ω B

1
ξk

6= ∅.
Also note that since B0

ξk
⊂ Wk, a ξk-homogeneous γ < c has the property that

{γ}×ω ⊂ B1
ξk

. Therefore
⋂
k∈ω B

1
ξk
6= ∅ will follow from Lemma 5.1, if we can show

that {ξk : k ∈ ω} ⊂ R. To see this, let α ∈M∩c. Then by our choice of Vt(x),K(x)(x)
at the beginning of Section 4, {ξk : k ∈ ω} ⊂ ⋃k∈ω t1(α, k) ⊂ t1(A) ∩M = R.

6. Concluding remarks

1. F. Tall ([T1], [T2]) asked whether normal, screenable spaces have to be
collectionwise normal. We can now answer Tall’s question with the help of the
following result of M.E. Rudin.

Theorem 6.1 (M.E. Rudin [R2]). If there is a normal, screenable, nonpara-
compact space, then there is a normal, screenable space which is not collectionwise
normal.

Thus our Theorem I implies

Theorem 6.2. There is a normal, screenable, space which is not collectionwise
normal.

2. Several related problems remain open. In particular:

Problem 6.3. Is there a nonparacompact normal space with a σ-disjoint base?

Problem 6.4. Is there a normal, screenable, nonparacompact space which is first
countable?
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