There is a paracompact Q-set space in ZFC
HTML articles powered by AMS MathViewer
- by Zoltan T. Balogh
- Proc. Amer. Math. Soc. 126 (1998), 1827-1833
- DOI: https://doi.org/10.1090/S0002-9939-98-04426-8
- PDF | Request permission
Abstract:
We construct a paracompact space $QX$ such that every subset of $QX$ is an $F_{\sigma }$-set, yet $QX$ is not $\sigma$-discrete. We will construct our space not to have a $G_{\delta }$-diagonal, which answers questions of A.V. Arhangel′skiǐ and D. Shakhmatov on cleavable spaces.References
- A. V. Arhangel′skiĭ, The general concept of cleavability of a topological space, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 27–36. MR 1173240, DOI 10.1016/0166-8641(92)90076-C
- A. V. Arhangel′skii, Divisibility and cleavability of spaces, Recent developments of general topology and its applications (Berlin, 1992) Math. Res., vol. 67, Akademie-Verlag, Berlin, 1992, pp. 13–26. MR 1219762
- A. V. Arkhangel′skiĭ and D. B. Shakhmatov, Pointwise approximation of arbitrary functions by countable families of continuous functions, Trudy Sem. Petrovsk. 13 (1988), 206–227, 259 (Russian, with English summary); English transl., J. Soviet Math. 50 (1990), no. 2, 1497–1512. MR 961436, DOI 10.1007/BF01388512
- Zoltán T. Balogh, There is a $Q$-set space in ZFC, Proc. Amer. Math. Soc. 113 (1991), no. 2, 557–561. MR 1077786, DOI 10.1090/S0002-9939-1991-1077786-3
- Zoltán Balogh and Heikki Junnila, Totally analytic spaces under $V=L$, Proc. Amer. Math. Soc. 87 (1983), no. 3, 519–527. MR 684650, DOI 10.1090/S0002-9939-1983-0684650-3
- Peter de Caux, A nondegenerate $\sigma$-discrete Moore space which is connected, Colloq. Math. 41 (1979), no. 2, 207–209. MR 591925, DOI 10.4064/cm-41-2-207-209
- R. W. Hansell, Some consequences of $(V=L)$ in the theory of analytic sets, Proc. Amer. Math. Soc. 80 (1980), no. 2, 311–319. MR 577766, DOI 10.1090/S0002-9939-1980-0577766-0
- Heikki J. K. Junnila, Some topological consequences of the product measure extension axiom, Fund. Math. 115 (1983), no. 1, 1–8. MR 690665, DOI 10.4064/fm-115-1-1-8
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), no. 2, 145–152. MR 600588, DOI 10.4064/fm-110-2-145-152
Bibliographic Information
- Zoltan T. Balogh
- Affiliation: Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45058
- Email: ZTBalogh@miavx1.muohio.edu
- Received by editor(s): August 24, 1995
- Additional Notes: Research supported by NSF Grant DMS-9108476.
- Communicated by: Franklin D. Tall
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1827-1833
- MSC (1991): Primary 54Dxx
- DOI: https://doi.org/10.1090/S0002-9939-98-04426-8
- MathSciNet review: 1459106