Subaveraging estimate for $CR$ functions defined on a hypersurface $M$ of ${\mathrm {C}}^{n}$
HTML articles powered by AMS MathViewer
- by Victoria Paolantoni PDF
- Proc. Amer. Math. Soc. 126 (1998), 1733-1738 Request permission
Abstract:
Let $M$ be a smooth real hypersurface of $\mathrm {C}^{n}$ and $N$ a compact submanifold of $M$. We generalize a result of A. Boggess and R. Dwilewicz giving, under some geometric conditions on $M$ and $N$, an estimate of the submeanvalue on $N$ of any $CR$ function $f$ on a neighbourhood of $N$, by the $L^{1}$ norm of $f$ on a neighbourhood of $N$ in $M$.References
- Thomas Bloom and Ian Graham, A geometric characterization of points of type $m$ on real submanifolds of $\textbf {C}^{n}$, J. Differential Geometry 12 (1977), no. 2, 171–182. MR 492369
- A. Boggess and R. Dwilewicz, Subaveraging estimates for CR functions, Proc. Amer. Math. Soc. 104 (1988), no. 1, 117–124. MR 958054, DOI 10.1090/S0002-9939-1988-0958054-4
- A. Boggess, R. Dwilewicz, and A. Nagel, The hull of holomorphy of a nonisotropic ball in a real hypersurface of finite type, Trans. Amer. Math. Soc. 323 (1991), no. 1, 209–232. MR 1079050, DOI 10.1090/S0002-9947-1991-1079050-X
- A. M. Davie and B. K. Øksendal, Peak interpolation sets for some algebras of analytic functions, Pacific J. Math. 41 (1972), 81–87. MR 310293
- V.Paolantoni “Propriétés d’extension et estimations de sous-moyenne pour des fonctions de Cauchy-Riemann définies sur une hypersurface de $\mathrm { C}^{n}$"Thèse de doctorat, Université de Provence (1996)
Additional Information
- Victoria Paolantoni
- Affiliation: Centre de Mathématiques et Informatique, Université de Provence, 39, avenue Joliot Curie, 13453 Marseille Cédex 13, France
- Email: paolanto@gyptis.univ-mrs.fr
- Received by editor(s): November 26, 1996
- Communicated by: Eric Bedford
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1733-1738
- MSC (1991): Primary 32F99, 32D15; Secondary 58G17
- DOI: https://doi.org/10.1090/S0002-9939-98-04466-9
- MathSciNet review: 1459143