Curves in Grassmannians
HTML articles powered by AMS MathViewer
- by Montserrat Teixidor i Bigas
- Proc. Amer. Math. Soc. 126 (1998), 1597-1603
- DOI: https://doi.org/10.1090/S0002-9939-98-04475-X
- PDF | Request permission
Abstract:
This paper considers curves in Grassmannians which are themselves immersed in projective space by the Plücker map. It is shown that for a generic vector bundle of high enough degree, the image curve lies in a proper linear subvariety of this projective space and satisfies good conditions on syzygies as a curve in this subspace. For very small degree and generic vector bundle, the curve is non-degenerate.References
- David C. Butler, Normal generation of vector bundles over a curve, J. Differential Geom. 39 (1994), no. 1, 1–34. MR 1258911
- G.Castelnuovo, Sui multipli di una serie di gruppi di punti appartenente ad una curva algebrica, Rend.Circ.Mat.Palermo 7 (1892), 99-119.
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- Bernard Saint-Donat, Sur les équations définissant une courbe algébrique, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A324–A327 (French). MR 289516
- Gerald E. Welters, Polarized abelian varieties and the heat equations, Compositio Math. 49 (1983), no. 2, 173–194. MR 704390
Bibliographic Information
- Montserrat Teixidor i Bigas
- Affiliation: Department of Mathematics, Tufts University, Medford, Massachusetts 02155
- Address at time of publication: D.P.M.M.S., 16 Mills Lane, Cambridge CB2 1SB, England
- MR Author ID: 214136
- Email: mteixido@tufts.edu, teixidor@dpmms.cam.ac.uk
- Received by editor(s): November 8, 1996
- Communicated by: Ron Donagi
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1597-1603
- MSC (1991): Primary 14F05, 14H10; Secondary 14H45
- DOI: https://doi.org/10.1090/S0002-9939-98-04475-X
- MathSciNet review: 1459153