Non-noetherian regular rings of dimension 2
HTML articles powered by AMS MathViewer
- by James J. Zhang PDF
- Proc. Amer. Math. Soc. 126 (1998), 1645-1653 Request permission
Abstract:
We study connected, not necessarily noetherian, regular rings of global dimension 2.References
- Michael Artin and William F. Schelter, Graded algebras of global dimension $3$, Adv. in Math. 66 (1987), no. 2, 171–216. MR 917738, DOI 10.1016/0001-8708(87)90034-X
- M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33–85. MR 1086882
- M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension $3$, Invent. Math. 106 (1991), no. 2, 335–388. MR 1128218, DOI 10.1007/BF01243916
- George M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178–218. MR 506890, DOI 10.1016/0001-8708(78)90010-5
- Warren Dicks, On the cohomology of one-relator associative algebras, J. Algebra 97 (1985), no. 1, 79–100. MR 812171, DOI 10.1016/0021-8693(85)90075-4
- C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, vol. 28, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 676974
- D. R. Stephenson, Artin-Schelter regular algebras of global dimension three, J. Algebra 183 (1996), no. 1, 55–73. MR 1397387, DOI 10.1006/jabr.1996.0207
- D. R. Stephenson, Algebras associated to elliptic curves, Trans. Amer. Math. Soc., 349 (1997), 2317–2340.
- Darin R. Stephenson and James J. Zhang, Growth of graded Noetherian rings, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1593–1605. MR 1371143, DOI 10.1090/S0002-9939-97-03752-0
- J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. (3) 72 (1996), no. 2, 281–311. MR 1367080, DOI 10.1112/plms/s3-72.2.281
- J. J. Zhang, Quadratic algebras with few relations, Glasgow Math. J., to appear.
Additional Information
- James J. Zhang
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): December 3, 1996
- Additional Notes: This research was supported by an NSF Postdoctoral Fellowship
- Communicated by: Ken Goodearl
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1645-1653
- MSC (1991): Primary 16W50, 16E10, 16E70
- DOI: https://doi.org/10.1090/S0002-9939-98-04480-3
- MathSciNet review: 1459158