A simple and direct derivation for the number of noncrossing partitions
HTML articles powered by AMS MathViewer
- by S. C. Liaw, H. G. Yeh, F. K. Hwang and G. J. Chang PDF
- Proc. Amer. Math. Soc. 126 (1998), 1579-1581 Request permission
Abstract:
Kreweras considered the problem of counting noncrossing partitions of the set $\{1,2,\cdots ,n\}$, whose elements are arranged into a cycle in its natural order, into $p$ parts of given sizes $n_1,n_2,\cdots ,n_p$ (but not specifying which part gets which size). He gave a beautiful and surprising result whose proof resorts to a recurrence relation. In this paper we give a direct, entirely bijective, proof starting from the same initial idea as Kreweras’ proof.References
- H. W. Becker, Planar rhyme schemes, Bull. Amer. Math. Soc. 58 (1952) 39.
- Joseph Bonin, Louis Shapiro, and Rodica Simion, Some $q$-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths, J. Statist. Plann. Inference 34 (1993), no. 1, 35–55. MR 1209988, DOI 10.1016/0378-3758(93)90032-2
- Alain Denise and Rodica Simion, Two combinatorial statistics on Dyck paths, Discrete Math. 137 (1995), no. 1-3, 155–176. MR 1312450, DOI 10.1016/0012-365X(93)E0147-V
- Nachum Dershowitz and Shmuel Zaks, Ordered trees and noncrossing partitions, Discrete Math. 62 (1986), no. 2, 215–218. MR 863045, DOI 10.1016/0012-365X(86)90120-2
- I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. MR 81
- Paul H. Edelman and Rodica Simion, Chains in the lattice of noncrossing partitions, Discrete Math. 126 (1994), no. 1-3, 107–119. MR 1264480, DOI 10.1016/0012-365X(94)90257-7
- G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333–350 (French). MR 309747, DOI 10.1016/0012-365X(72)90041-6
- Germain Kreweras, Une famille d’identités mettant en jeu toutes les partitions d’un ensemble fini de variables en un nombre donné de classes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1140–A1143 (French). MR 258645
- A. Nica and R. Speicher, A “Fourier transform” for multiplicative functions on non-crossing partitions, J. Algeb. Comb., 6 (1997), 141–160.
- Yves Poupard, Étude et dénombrement parallèles des partitions non-croisées d’un cycle et des découpages d’un polygone convexe, Discrete Math. 2 (1972), no. 3, 279–288 (French). MR 304234, DOI 10.1016/0012-365X(72)90008-8
- Rodica Simion, Combinatorial statistics on noncrossing partitions, J. Combin. Theory Ser. A 66 (1994), no. 2, 270–301. MR 1275735, DOI 10.1016/0097-3165(94)90066-3
- Rodica Simion and Daniel Ullman, On the structure of the lattice of noncrossing partitions, Discrete Math. 98 (1991), no. 3, 193–206. MR 1144402, DOI 10.1016/0012-365X(91)90376-D
- Roland Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), no. 4, 611–628. MR 1268597, DOI 10.1007/BF01459754
- R. P. Stanley, Parking functions and noncrossing partitions, Elect. J. Comb. 4 (1997), no. 2, res. paper 20, approx. 14 pp. (electronic).
Additional Information
- G. J. Chang
- Email: gjchang@math.nctu.edu.tw
- Received by editor(s): November 6, 1996
- Additional Notes: Liaw, Yeh, and Chang were supported in part by the National Science Council under grant NSC86-2115-M009-002.
- Communicated by: Jeffry N. Kahn
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 1579-1581
- MSC (1991): Primary 05A18
- DOI: https://doi.org/10.1090/S0002-9939-98-04546-8
- MathSciNet review: 1468196