Mean exit time from convex hypersurfaces
HTML articles powered by AMS MathViewer
- by Vicente Palmer
- Proc. Amer. Math. Soc. 126 (1998), 2089-2094
- DOI: https://doi.org/10.1090/S0002-9939-98-04202-6
- PDF | Request permission
Abstract:
L. Karp and M. Pinsky proved that, for small radius $R$, the mean exit time function $E_{R}$ of an extrinsic $R$-ball in a hypersurface $P^{n-1} \subseteq \mathbb {R}^{n}$ is bounded from below by the corresponding function $\widetilde E_{R}$ defined on an extrinsic $R$-ball in $\mathbb {R}^{n-1}$. A counterexample given by C. Mueller proves that this inequality doesn’t holds in the large. In this paper we show that, if $P$ is convex, then the inequality holds for all radii. Moreover, we characterize the equality and show that analogous results are true in the sphere.References
- Carreras, F.J., Gimenez, F. and Miquel, V., Immersions of compact riemannian manifolds onto a ball in a complex space form, To appear in Math. Zeit.
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau, Heat equations on minimal submanifolds and their applications, Amer. J. Math. 106 (1984), no. 5, 1033–1065. MR 761578, DOI 10.2307/2374272
- M. P. do Carmo and F. W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Differential Geometry 4 (1970), 133–144. MR 266105, DOI 10.4310/jdg/1214429378
- E. B. Dynkin, Markov processes. Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Band 121, vol. 122, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. MR 0193671, DOI 10.1007/978-3-662-00031-1
- R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 521983, DOI 10.1007/BFb0063413
- Thomas Hasanis, Isometric immersions into spheres, J. Math. Soc. Japan 33 (1981), no. 3, 551–555. MR 620291, DOI 10.2969/jmsj/03330551
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- L. Karp and M. Pinsky, Mean exit time from an extrinsic ball, From local times to global geometry, control and physics (Coventry, 1984/85) Pitman Res. Notes Math. Ser., vol. 150, Longman Sci. Tech., Harlow, 1986, pp. 179–186. MR 894530
- Leon Karp and Mark Pinsky, Volume of a small extrinsic ball in a submanifold, Bull. London Math. Soc. 21 (1989), no. 1, 87–92. MR 967797, DOI 10.1112/blms/21.1.87
- Carl Mueller, A counterexample for Brownian motion on manifolds, Geometry of random motion (Ithaca, N.Y., 1987) Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 217–221. MR 954641, DOI 10.1090/conm/073/954641
- Steen Markvorsen, On the mean exit time from a minimal submanifold, J. Differential Geom. 29 (1989), no. 1, 1–8. MR 978073
- Steen Markvorsen, On the heat kernel comparison theorems for minimal submanifolds, Proc. Amer. Math. Soc. 97 (1986), no. 3, 479–482. MR 840633, DOI 10.1090/S0002-9939-1986-0840633-4
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
Bibliographic Information
- Vicente Palmer
- Affiliation: Departament de Matematiques, Universitat Jaume I, Castello, Spain
- MR Author ID: 321288
- Email: palmer@mat.uji.es
- Received by editor(s): August 6, 1996
- Received by editor(s) in revised form: December 10, 1996
- Additional Notes: Work partially supported by a DGICYT Grant No. PB94-0972
- Communicated by: Peter Li
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2089-2094
- MSC (1991): Primary 53C21, 58G32
- DOI: https://doi.org/10.1090/S0002-9939-98-04202-6
- MathSciNet review: 1443163