Lie incidence systems from projective varieties
HTML articles powered by AMS MathViewer
- by Arjeh M. Cohen and Bruce N. Cooperstein
- Proc. Amer. Math. Soc. 126 (1998), 2095-2102
- DOI: https://doi.org/10.1090/S0002-9939-98-04223-3
- PDF | Request permission
Abstract:
The homogeneous space $G/P_{\lambda }$, where $G$ is a simple algebraic group and $P_{\lambda }$ a parabolic subgroup corresponding to a fundamental weight $\lambda$ (with respect to a fixed Borel subgroup $B$ of $G$ in $P_{\lambda }$), is known in at least two settings. On the one hand, it is a projective variety, embedded in the projective space corresponding to the representation with highest weight $\lambda$. On the other hand, in synthetic geometry, $G/P_{\lambda }$ is furnished with certain subsets, called lines, of the form $gB\langle r\rangle P_{\lambda }/P_{\lambda }$ where $r$ is a preimage in $G$ of the fundamental reflection corresponding to $\lambda$ and $g\in G$. The result is called the Lie incidence structure on $G/P_{\lambda }$. The lines are projective lines in the projective embedding. In this paper we investigate to what extent the projective variety data determines the Lie incidence structure.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- M. Brion, Représentations exceptionnelles des groupes semi-simples, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 345–387 (French). MR 816368, DOI 10.24033/asens.1492
- Arjeh M. Cohen, Point-line spaces related to buildings, Handbook of incidence geometry, North-Holland, Amsterdam, 1995, pp. 647–737. MR 1360727, DOI 10.1016/B978-044488355-1/50014-1
- Arjeh M. Cohen and Bruce N. Cooperstein, The $2$-spaces of the standard $E_6(q)$-module, Geom. Dedicata 25 (1988), no. 1-3, 467–480. Geometries and groups (Noordwijkerhout, 1986). MR 925847, DOI 10.1007/BF00191937
- Bruce N. Cooperstein, Some geometries associated with parabolic representations of groups of Lie type, Canadian J. Math. 28 (1976), no. 5, 1021–1031. MR 412257, DOI 10.4153/CJM-1976-100-9
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE manual, describing version 2.0, CAN, Amsterdam, 1992.
- A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216, DOI 10.1007/BF02698935
Bibliographic Information
- Arjeh M. Cohen
- Affiliation: Fac. Wisk. en Inf., TUE Postbus 513, 5600 MB Eindhoven, The Netherlands
- Email: amc@win.tue.nl
- Bruce N. Cooperstein
- Affiliation: Fac. Wisk. en Inf., TUE Postbus 513, 5600 MB Eindhoven, The Netherlands; Department of Mathematics, University of California, Santa Cruz, California 95064
- Email: coop@cats.ucsc.edu
- Received by editor(s): July 6, 1996
- Received by editor(s) in revised form: December 18, 1996
- Communicated by: Ronald M. Solomon
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 2095-2102
- MSC (1991): Primary 51B25; Secondary 14L17, 14M15
- DOI: https://doi.org/10.1090/S0002-9939-98-04223-3
- MathSciNet review: 1443819